Принцип работы асинхронного двигателя с короткозамкнутым ротором

Как и большинство электромоторов, асинхронный двигатель переменного тока (АД) имеет фиксированную внешнюю часть, которая именуется статором, и ротор, вращающийся внутри. Между ними есть тщательно рассчитанный воздушный зазор.

Как это работает?

Устройство и принцип действия асинхронных двигателей, как и всех других, основаны на том, что для приведения в движение ротора используют вращение магнитного поля. Трехфазный АД является единственным типом мотора, в котором оно создается естественным образом из-за характера питания. В двигателях постоянного тока для этого используется механическая или электронная коммутация, а в однофазных АД – дополнительные электрические элементы.

Для работы электромотора необходимо наличие двух наборов электромагнитов. Принцип действия асинхронного электродвигателя состоит в том, что один набор формируется в статоре, так как к его обмотке подключается источник переменного тока. В соответствии с законом Ленца, это индуцирует в роторе электромагнитную силу (ЭДС) так же, как напряжение индуцируется во вторичной обмотке трансформатора, создавая другой набор электромагнитов. Отсюда и еще одно название АД – индукционный мотор. Устройство и принцип действия асинхронных двигателей основаны на том, что взаимодействие между магнитными полями этих электромагнитов генерирует крутящую силу. В итоге ротор вращается в направлении результирующего момента.

image

Статор

Статор состоит из нескольких тонких пластин из алюминия или чугуна. Их спрессовывают друг с другом, чтобы сформировать полый цилиндр сердечника с пазами. В них укладывают изолированные провода. Каждая группа обмоток вместе с окружающим их сердечником после подачи на нее переменного тока образует электромагнит. Число полюсов АД зависит от внутреннего соединения обмоток статора. Оно сделано таким образом, что при подключении источника питания образуется вращающееся магнитное поле.

Ротор

Ротор состоит из нескольких тонких стальных пластин с равномерно расположенными по периферии стержнями из алюминия или меди. В наиболее популярном его типе – короткозамкнутом, или «беличьей клетке», – стержни на концах механически и электрически соединены с помощью колец. Почти в 90% АД используется такая конструкция, так как она проста и надежна. Ротор состоит из цилиндрического пластинчатого сердечника с аксиально размещенными параллельными пазами для установки проводников. В каждый паз укладывается стержень из меди, алюминия или сплава. Они замкнуты накоротко с обеих сторон с помощью концевых колец. Такая конструкция напоминает беличью клетку, из-за чего и получила соответствующее название.

Пазы ротора не совсем параллельны валу. Их делают с небольшим перекосом по двум основным причинам. Первая заключается в обеспечении плавной работы АД за счет уменьшения магнитного шума и гармоник. Вторая заключается в снижении вероятности застопоривания ротора: его зубцы зацепляются за прорези статора за счет прямого магнитного притяжения между ними. Это происходит, когда их число совпадает. Ротор устанавливается на валу с помощью подшипников на каждом конце. Одна часть обычно выступает больше, чем другая, для приведения в движение нагрузки. В некоторых двигателях на нерабочем конце вала крепятся датчики скорости или положения.

Между статором и ротором имеется воздушный зазор. Через него передается энергия. Сгенерированный крутящий момент заставляет ротор и нагрузку вращаться. Вне зависимости от типа используемого ротора, устройство и принцип действия асинхронного двигателя остаются неизменными. Как правило, АД классифицируются по числу обмоток статора. Различают однофазные и трехфазные электрические моторы.

image

Устройство и принцип действия однофазного асинхронного двигателя

Однофазные АД составляют наибольшую часть электромоторов. Вполне логично, что наименее дорогой и непритязательный к обслуживанию двигатель используется наиболее часто. Как следует из названия, назначение, принцип действия асинхронного двигателя этого типа основаны на наличии только одной обмотки статора и работе с однофазным источником питания. У всех АД данного типа ротор является короткозамкнутым.

Однофазные моторы самостоятельно не запускаются. Когда двигатель подключается к источнику питания, по основной обмотке начинает течь переменный ток. Он генерирует пульсирующее магнитное поле. Из-за индукции ротор находится под напряжением. Поскольку главное магнитное поле пульсирует, крутящий момент, необходимый для вращения двигателя, не генерируется. Ротор начинает вибрировать, а не вращаться. Поэтому для однофазного АД требуется наличие пускового механизма. Он может обеспечить начальный толчок, заставляющий вал двигаться.

Стартовый механизм однофазного АД состоит в основном из дополнительной обмотки статора. Ей могут сопутствовать последовательный конденсатор или центробежный выключатель. При подаче напряжения питания ток в основной обмотке отстает от напряжения из-за ее сопротивления. В то же время электричество в стартовой обмотке отстает или опережает напряжение питания в зависимости от импеданса пускового механизма. Взаимодействие между магнитными полями, генерируемыми основной обмоткой и стартовой схемой, создает результирующее магнитное поле. Оно вращается в одном направлении. Ротор начинает поворачиваться в направлении результирующего магнитного поля.

После того как скорость мотора достигнет около 75% от номинальной, центробежный выключатель отключает пусковую обмотку. Далее двигатель может поддерживать достаточный крутящий момент, чтобы действовать самостоятельно. За исключением моторов со специальным стартовым конденсатором, все однофазные электродвигатели, как правило, используются для создания мощности, не превышающей 500 Вт. В зависимости от различных методов пуска, однофазный АД дополнительно классифицируются, как описано в следующих разделах.

АД с расщепленной фазой

Назначение, устройство и принцип действия асинхронного двигателя с расщепленной фазой основаны на использовании в нем двух обмоток: стартовой и основной. Пусковая выполнена из проволоки меньшего диаметра и меньшим количеством витков по отношению к основной, чтобы создать большее сопротивление. Это позволяет ориентировать ее магнитное поле под углом. Он отличается от направления основного магнитного поля, что приводит к вращению ротора. Рабочая обмотка, которая сделана из провода большего диаметра, обеспечивает функционирование двигателя в остальное время.

Пусковой момент низкий, как правило, от 100 до 175% от номинального. Двигатель потребляет высокий стартовый ток. Он в 7–10 раз превышает номинальный. Максимальный крутящий момент также в 2,5–3,5 раза больше. Данный тип моторов используется в небольших шлифовальных машинках, вентиляторах и воздуходувках, а также в других устройствах, требующих низкого крутящего момента, мощностью от 40 до 250 Вт. Следует избегать применения подобных двигателей там, где часты циклы включения-выключения или требуется высокий вращающий момент.

АД с конденсаторным пуском

Конденсаторный асинхронный тип двигателя и принцип его работы основаны на том, что к его пусковой обмотке с расщепленной фазой последовательно подключена емкость, обеспечивающая стартовый «импульс». Как и в предыдущей разновидности моторов, здесь также имеется центробежный выключатель. Он отключает стартовый контур, когда скорость двигателя достигает 75% от номинальной. Так как конденсатор включен последовательно, это создает больший пусковой момент, достигающий 2–4-кратного размера от рабочего. А пусковой ток, как правило, составляет в 4,5–5,75 раз превышает номинальный, что значительно ниже, чем в случае расщепленной фазы, из-за большего провода в стартовой обмотке.

Модифицированным вариантом пуска отличается двигатель с активным сопротивлением. В этом типе мотора емкость заменена резистором. Сопротивление используется в тех случаях, когда требуется меньший стартовый крутящий момент, чем при использовании конденсатора. Помимо более низкой стоимости, это не дает преимущества перед емкостным пуском. Данные двигатели используются в агрегатах с ременным приводом: небольших конвейерах, больших вентиляторах и насосах, а также во многих устройствах с прямым приводом или с использованием редуктора.

АД с рабочим фазосдвигающим конденсатором

Устройство и принцип действия асинхронного двигателя данного типа основаны на постоянном подключении конденсатора, последовательно соединенного с пусковой обмоткой. После выхода мотора на номинальную скорость стартовый контур становится вспомогательным. Так как емкость должна быть рассчитана на непрерывное использование, она не может обеспечить начальный импульс пускового конденсатора. Пусковой момент такого двигателя низкий. Он составляет 30–150% от номинального. Пусковой ток небольшой – менее 200% от номинального, что делает электромоторы данного типа идеальными там, где требуется частое включение и выключение.

Такая конструкция имеет ряд преимуществ. Схему легко изменить для использования с контроллерами скорости. Электромоторы можно настроить на оптимальную эффективность и высокий коэффициент мощности. Они считаются самыми надежными из однофазных двигателей в основном потому, что в них не используется центробежный пусковой выключатель. Применяются в вентиляторах, воздуходувках и часто включаемых устройствах. Например, в регулировочных механизмах, системах открытия ворот и гаражных дверей.

АД с пусковым и рабочим конденсатором

Устройство и принцип действия асинхронного двигателя данного типа основаны на последовательном подключении стартового конденсатора к пусковой обмотке. Это дает возможность создать больший крутящий момент. Кроме того, у него имеется постоянный конденсатор, подключаемый последовательно со вспомогательной обмоткой после отключения пусковой емкости. Такая схема допускает большие перегрузки крутящего момента.

Этот тип двигателя рассчитан на более низкие токи полной нагрузки, что обеспечивает его большую эффективность. Данная конструкция наиболее затратна из-за наличия пускового, рабочего конденсаторов и центробежного выключателя. Применяется в деревообрабатывающих станках, воздушных компрессорах, водяных насосах высокого давления, вакуумных насосах и там, где необходим высокий крутящий момент. Мощность – от 0,75 до 7,5 кВт.

АД с экранированным полюсом

Устройство и принцип действия асинхронного двигателя данного типа состоят в том, что у него имеется только одна основная обмотка и нет стартовой. Пуск производится благодаря тому, что вокруг небольшой части каждого из полюсов статора есть экранирующее медное кольцо, в результате чего магнитное поле в данной области отстает от поля в неэкранированной части. Взаимодействие двух полей приводит к вращению вала.

Так как нет ни пусковой катушки, ни переключателя или конденсатора, мотор электрически прост и недорог. Кроме того, его скорость можно регулировать изменением напряжения или через многоотводную обмотку. Конструкция двигателя с экранированными полюсами позволяет его массовое производство. Его, как правило, считают «одноразовым», так как его намного дешевле заменить, чем отремонтировать. Помимо положительных качеств, у такой конструкции есть ряд недостатков:

  • низкий пусковой момент, равный 25–75% от номинального;
  • высокое скольжение (7–10%);
  • низкий КПД (менее 20%).

Низкая начальная стоимость позволяет использовать АД данного типа в маломощных или редко используемых устройствах. Речь идет о бытовых многоскоростных вентиляторах. Но низкий крутящий момент, низкий КПД и невысокие механические характеристики не позволяют их коммерческое или промышленное применение.

Трехфазные АД

Данные электромоторы нашли широкое применение в промышленности. Устройство и принцип работы трехфазного асинхронного двигателя определяются его конструктивным исполнением – с короткозамкнутым или с фазным ротором. Для его пуска не требуется конденсатор, стартовая обмотка, центробежный выключатель или другое устройство. Пусковой момент средний и высокий, как и мощность и эффективность. Используются в шлифовальных, токарных, сверлильных станках, насосах, компрессорах, конвейерах, сельскохозяйственной технике и др.

АД с замкнутым ротором

Это трехфазный асинхронный двигатель, принцип работы и устройство которого были описаны выше. Составляет почти 90% всех трехфазных электромоторов. Выпускается мощностью от 250 Вт до нескольких сотен кВт. По сравнению с однофазовыми двигателями мощностью от 750 Вт, они дешевле и выдерживают большие нагрузки.

АД с фазным ротором

Устройство и принцип действия трехфазного асинхронного двигателя с фазным ротором отличаются от АД типа «беличья клетка» тем, что на роторе есть набор обмоток, концы которых не замкнуты накоротко. Они выведены на контактные кольца. Это позволяет подключать к ним внешние резисторы и контакторы. Максимальный крутящий момент прямо пропорционален сопротивлению ротора. Поэтому на низких скоростях его можно повысить дополнительным сопротивлением. Высокое сопротивление позволяет получить большой крутящий момент при низком пусковом токе.

По мере ускорения ротора сопротивление уменьшается для изменения характеристики мотора, чтобы удовлетворить требованиям нагрузки. После того как двигатель достигнет базовой скорости, внешние резисторы отключаются. И электромотор работает как обычный АД. Данный тип идеален для высокой инерционной нагрузки, требующей приложения крутящего момента при почти нулевой скорости. Он обеспечивает разгон до максимума за минимальное время с минимальным потреблением тока.

Недостатком таких двигателей является то, что контактные кольца и щетки нуждаются в регулярном обслуживании, чего не требуется для мотора с короткозамкнутым ротором. Если обмотка ротора замкнута и производится попытка пуска (т. е. устройство становится стандартным АД), в нем будет течь очень высокий ток. Он в 14 раз превышает номинальный при очень низком крутящем моменте, составляющем 60% от базового. В большинстве случаев применение это не находит.

Изменяя зависимость скорости вращения от крутящего момента путем регулирования сопротивлений ротора, можно варьировать обороты при определенной нагрузке. Это позволяет эффективно снижать их примерно на 50%, если нагрузка требует переменного момента и оборотов, что часто встречается в печатных машинах, компрессорах, транспортерах, подъемниках и лифтах. Уменьшение скорости ниже 50% приводит к очень низкой эффективности за счет более высокой рассеиваемой мощности в сопротивлениях ротора.

Асинхронные электродвигатели – это один из самых широко применяемых видов двигателей. Их можно встретить везде – в стиральной машинке, вентиляторе, вытяжке и т.п. вещах. Об особенностях конструкции подобных устройств и пойдёт речь в этой статье.

Как видно на фото асинхронного двигателя, подобный агрегат представляет собой электромашину, назначение которой заключается в преобразовании электроэнергии в энергию механического типа. Другими словами, подобное оборудование, потребляя электроток, даёт крутящий момент. Именно он позволяет вращать многие агрегаты.

Название «асинхронный» значит «неодновременный». Если изучить описание асинхронных двигателей, то можно заметить, что в таких устройствах ротор вращается с меньшей частотой, чем электромагнитное поле статора.

Данное отставание или, как его ещё называют, скольжение можно высчитать, используя следующую формулу:

S = (n1— n2)/ n1 — 100%, где

n1 – частота электромагнитного поля статора;

n2 – частота вращения вала.

“> “> “> “> “> “>

Статор, ротор, подшипниковые щиты и подшипники, вентилятор, клеммный короб – все это элементы конструкции асинхронного двигателя.

Статор – это стационарная деталь конструкции, на которой располагается обмотка. Именно она создаёт электромагнитное поле.

Ротором называется подвижная комплектующая прибора. Именно в нём создаётся электромагнитный момент, способствующий движению как самого ротора, так и исполнительного механизма.

Сердечники двух вышеописанных элементов изготавливаются из электротехнической стали толщиной 1/2 мм. Обязательно присутствует изоляция: у статора её роль отводится лаковой плёнке, а у ротора – окалине. Роторную обмотку чаще всего делают из алюминия.

Короткозамкнутый вариант ротора – это вал с насаженными на него наборными листами из стали, которые образуют сердечник. Его пазы заполняют сплавом алюминия. Он, застывая, формирует стержни. С краёв всё соединяют кольца из того же материала.

  • ТВ-розетки: виды, схемы подключения и полезные советы
  • Топ 10 лучших генераторов для дома
  • Какой стабилизатор напряжения выбрать для дома и дачи

Фазный ротор состоит из вала с сердечником, оборудованным 3-мя обмотками. Часть концов, соединяясь, образуют звезду, а остальные крепятся к токосъёмным кольцам, которые подают электроток.

Наиболее широкая область использования у трёхфазных электродвигателей с короткозамкнутым ротором.

Принцип работы асинхронного электродвигателя с короткозамкнутым ротором заключается в следующем: при подаче на статорные обмотки тока возникает магнитный поток, который, вращаясь, способствует возникновению тока и магнитного поля в роторе. Роторное и статорное поле, взаимодействуя друг с другом, приводят ротор двигателя в движение.

“> “> “> “> “> “> “> “> “>

У оборудования с фазным ротором принцип действия схожий. Поэтому не будем повторно описывать весь процесс работы устройства.

К преимуществам асинхронных машин с короткозамкнутым ротором относятся:

  • Простота конструкционного исполнения и, как следствие, быстрота изготовления.
  • Низкая стоимость.
  • Несложная схема включения.
  • Относительное постоянство скорости вращения вала при увеличении напряжения сети.
  • Устойчивость к кратковременным перегрузкам.
  • Возможность подключить к однофазной сети трёхфазный аппарат.
  • Высокая степень надёжности.
  • Универсальность.
  • Значительный КПД.
ИБП для дома: виды, устройство и особенности работы
  • Что такое промежуточное реле: конструкция, принцип действия, устройство и идеи по применению (115 фото)
  • Самодельный блок питания на 12 вольт: подбор компонентов и простые схемы для создания своими руками. 130 фото самодельных универсальных блоков
  • Минусы:

    • Отсутствие возможности контроля скорости вращения ротора без мощностных потерь.
    • Уменьшение момента при увеличении нагрузки.
    • Недостаточно высокое значение пускового момента.
    • Если недогрузить устройство, то параметр cosφ резко увеличивается.
    • Достаточно высокие значения пускового тока

    Теперь разберём достоинства агрегатов с ротором фазного типа:

    • Более высокий показатель вращающегося момента.
    • Возможность функционировать в условиях малой перегрузки.
    • Постоянство частоты, с которой вращается вал.
    • Малое значение пускового тока.
    • Возможность использовать АПУ.

    Есть и недостатки:

    • Крупногабаритность.
    • Более низкий уровень КПД и cosφ.
    • Необходимость обслуживать щёточный механизм.

    Как выбрать асинхронный двигатель? На что следует обращать внимание? Ответы на эти и многие другие вопросы вам лучше уточнить у опытных мастеров. Они с удовольствием окажут вам посильную помощь в выборе подходящей модели.

    Арматурные ножницы (болторезы): виды, характеристика, основные отличия
  • Как работает реле контроля напряжения: принцип работы защиты и нюансы подключения реле контроля для дома или квартиры
  • Что такое импульсное реле: принцип работы, виды, описание устройств и схемы подключения. 155 фото реле импульсного типа и видео инструкция по монтажу
  • Пожалуй, нет ни одного серьезного механизма или машины, где не применялись бы электрические двигатели. В автомобиле, с стиральной машине, сельхозтехнике и мелких бытовых приборах — везде используется электрический двигатель. Наибольшее распространение получил асинхронный электрический двигатель и о нем сегодня мы поговорим.

    Содержание:

    Благодаря своей простоте и экономичности, асинхронный электромотор может пригодиться не только в машиностроении и в быту, но мы рассмотрим именно такие двигатели, которые встречаются чаще всего. Причиной популярности асинхронного двигателя переменного тока стали его доступность, возможность подключения к любой розетке электропитания без всяких выпрямителей и согласовательных устройств, а также простотой обслуживания и ремонта в случае чего.

    Существуют два вида асинхронных электромоторов — с короткозамкнутым ротором и с фазным ротором. Но для начала стоит разобраться в конструкции и узнать принцип работы асинхронного двигателя с короткозамкнутым ротором, после чего станет понятна причина его популярности. Несмотря на то, что асинхронный мотор был разработан еще в конце 19 века, до сих пор его конструкция особенных изменений не претерпела.

    Главной особенностью характеристик этого двигателя и самым ценные их проявлением, считают тот факт, что нагрузка на двигатель практически никак не зависит от частоты вращения вала. Магнитные поля и электродвижущую силу изучают уже лет двести, а наш асинхронный двигатель стал лучшим подтверждением тому, это один из самых эффективных методов трансформации энергии.

    Принцип работы этого мотора как раз основан на взаимодействии подвижного магнитного поля и токопроводящего элемента, распложенного внутри этого поля. Двигатель, как известно еще со школьной скамьи, состоит из двух базовых узлов — рoтора и статора. Статoр как раз генерирует вращающееся магнитное поле. Конструктивно, статoр представляет собой металлический сердечник, на него намотана обмотка из медной проволоки с термолаковой изоляцией.

    Ротор фазного типа принципиально не отличается обмoткой от статора. Это трехфазная обмотка, концы которой соединены по схеме «звезда». Свободные концы обмоток подключены к токоприемным кольцам. Кольца контактируют с проводником посредством щеток и поэтому есть возможность установить в схему подключения дополнительный ограничивающий резистор.

    Резистор, как устройство плавного пуска, служит для того, чтобы была возможность уменьшать значения пускового тока, который может достигать довольно крупных значений.

    Короткoзамкнутый ротор представляет собой наборной сердечник из специальной листовой стали. Сердечник имеет каналы, которые не изолируют обмотки друг от друга, а наоборот — они залиты расплавленным легкоплавким легким металлом, а он образует прутки, которые в торцах фиксируются на кольцах.

    Металл, из которого выполняют эти прутки и которым заливают пространства между сердечниками, зависит от требуемых характеристик двигателя и это может быть как медь, так и алюминий.

    Работает двигатель на основе процесса получения механической работы в результате воздействия на проводник движущегося магнитного поля. На обмотку статора подают напряжение, причем каждая фаза образует свой магнитный поток. Частота магнитного потока напрямую зависит от частоты подаваемого тока на концы обмотки.

    За счет того, что обмотки сдвинуты на 120 градусов, сдвигаются и магнитные поля, причем сдвигаются они как в пространстве, так и во времени. Суммарный магнитный поток и будет вращать ротор двигателя. Это происходит потому, что вращающийся поток суммы частот каждой из обмоток, образуют в роторе электродвижущую силу. Поскольку ротор — короткозамкнутый, то он имеет свою собственную электрическую цепь, которая взаимодействуя с магнитным полем статора, образует крутящий момент, направленный в сторону движения магнитного потока статора.

    Следовательно, принцип работы асинхронного двигателя с короткозамкнутым ротором, объясняется вращением магнитного суммарного потока статора и его взаимодействия с возникшим в результате подачи тока, магнитным полем ротора.

    Читайте также:

    Асинхронные электродвигатели просты по конструкции, экономичны и надежны в работе. На судах асинхронные двигатели применяют для привода различных машин, механизмов и устройств; они составляют 80—90% общего числа устанавливаемых на судне электродвигателей. Принцип действия асинхронного трехфазного двигателя основан на использовании вращающегося магнитного поля. На рис. 1,а представлена модель, поясняющая работу двигателя. При вращении постоянного магнита с частотой n1 в неподвижном замкнутом витке индуктируется э. д. с. Е и протекает ток I, направление которых определяется правилом правой руки. Рис. 1. Принцип действия асинхронного двигателя:А—X, B—Y, С—Z — соответственно начала и концы фазных обмоток статора; Ф – распределение силовых линий вращающегося магнитного поля; 1 — ротор; 2 — статорВ результате взаимодействия активных сторон витка, по которым протекает ток I, с вращающимся полем постоянного магнита создается пара сил F—F (правило левой руки), под действием которой возникает вращающий момент в направлении вращения поля. Виток будет вращаться с частотой n21, т. е. асинхронно. На рис. 1,б показан простейший асинхронный двигатель. В пазах внутренней поверхности неподвижного стального цилиндра (статора) уложена трехфазная обмотка так, что оси катушек АХ, BY и CZ лежат в одной плоскости под углом 120° относительно друг друга. Из электротехники известно, что при подключении такой обмоки в сеть трехфазного переменного тока обмотка создает вращающееся магнитное поле. На рис. 1,б показано распределение силовых линий Ф вращающегося магнитного поля в рассматриваемый момент времени. Результирующий магнитный поток будет действовать по оси условных полюсов NS (показаны пунктиром). Для уменьшения магнитного сопротивления и увеличения вращающего момента активные стороны замкнутого витка размещаются в пазах вращающегося стального сердечника (ротора). Под действием поля статора, вращающегося с частотой n1, ротор будет вращаться в том же направлении с частотой n21. Соблюдение этого соотношения является необходимым условием для нормальной работы двигателя, так как при n2=n1 (синхронная частота вращения) исчезает вращающий момент. Так как магнитное поле статора и ротор вращаются в одном направлении, то разность их частот вращения определяет скорость перемещения потока относительно ротора n1—n2=ns. Относительная разность частот вращения поля статора и ротора называется скольжением: или (%) Для увеличения вращающего момента асинхронного двигателя в пазах его ротора укладывают большое число витков, которые образуют обмотку ротора. По конструкции обмотки ротора асинхронные двигатели выполняют двух видов: с короткозамкнутым ротором и с фазным ротором. Обмотку короткозамкнутого ротора выполняют из латунных или медных стержней, которые вставляют в неизолированные пазы ротора и по торцам замыкают накоротко медными кольцами (рис. 2,а). Такая обмотка получила название «беличья клетка». Наиболее широко применяют «беличью клетку», изготовленную путем заливки под давлением пазов ротора алюминиевым сплавом (рис. 2,б). При этом одновременно отливают торцевые кольца с вентиляционными лопастями. Рис. 2. Трехфазный асинхронный двигатель:1— сердечник статора; 2 — станина (корпус); 3 — выводная коробка; 4 — укладка двухслойной обмотки; 5 — лапыОбмотка фазного ротора состоит из трех катушечных групп. Катушки наматывают изолированным медным проводом и вставляют в изолированные пазы ротора. Катушки каждой группы, соединенные по определенной схеме, образуют однофазные обмотки. Полученную таким образом трехфазную обмотку соединяют обычно звездой и подключают к трем изолированным контактным кольцам, укрепленным на валу ротора. На судах в основном применяют асинхронные двигатели с короткозамкнутым ротором. Для уменьшения потерь стали сердечники статора и ротора набирают из штампованных листов электротехнической стали толщиной 0,5 мм, изолированных один от другого лаковой пленкой. Сердечник ротора жестко крепят на стальном валу. Сердечник статора запрессовывают в стальную или из алюминиевого сплава станину (рис. 2,в), которая является несущей конструкцией машины. На торцах станина заканчивается съемными подшипниковыми щитами, в которые устанавливают концами вал ротора с подшипниками. Так как обмотки статора и ротора связаны между собой только посредством магнитного потока, создаваемого статором, то величину воздушного зазора δ между статором и ротором делают по возможности меньше (δ = 0,25-0,35 мм у машин малой мощности и δ = 1-1,5 мм у машин большой мощности). Нижний предел зазора ограничивается по механическим соображениям. Асинхронные машины обратимы и могут работать в режиме двигателя или генератора. Однако при работе в режиме генератора асинхронные машины потребляют из сети реактивный ток и значительно снижают коэффициент мощности сети, поэтому их в основном используют в качестве двигателей. Наибольшее распространение на судах получили асинхронные двигатели серии AM (морского исполнения). Для улучшения условий охлаждения у асинхронных двигателей применяют наружный вентилятор, а внешнюю поверхность корпуса статора делают ребристой. Трехфазные обмотки статора асинхронных двигателей и синхронных генераторов выполняют одинаково. На рис. 1,б была показана простейшая трехфазная обмотка из трех витков, расположенных под углом 120° друг к другу. Такая обмотка создает слабое вращающееся магнитное поле у двигателей и небольшую э. д. с. у генераторов, поэтому в реальных машинах трехфазная обмотка состоит из многовитковых катушек. Ширина витка катушки (шаг Y обмотки), как и у машин постоянного тока, должна быть примерно равна полюсному делению τ (рис. 3). Катушка наматывается медным изолированным проводом и ее активные стороны укладывают в два изолированных паза сердечника статора. Одну сторону катушки укладывают в паз под одним полюсом, а вторую — под другим. Это необходимо для суммирования э. д. с. витков катушки у генераторов и м. д. с. — у двигателей. Рис. 3. Простейшая трехфазная однослойная обмотка статораДля образования трехфазной обмотки необходимо, чтобы под каждым полюсом находились стороны катушек всех трех фаз. У генераторов реальные полюсы расположены на вращающемся роторе, а у синхронных двигателей условные «вращающиеся» полюсы создаются вращающимся полем трехфазной обмотки статора. В зависимости от числа пар полюсов p машины обмотки фаз могут иметь различное число катушек, соединенных между собой по определенной схеме и образующих катушечную группу фазы. В трехфазной машине обмотка статора состоит из трех отдельных обмоток фаз, которые могут быть соединены между собой звездой или треугольником. Различают обмотки одно- и двухслойные, сосредоточенные и распределенные, волновые и петлевые. Наиболее широко распространены двухслойные петлевые обмотки с укороченным шагом. Укорочение шага обмотки (Y<τ) приводит к некоторому уменьшению э. д. с. у генераторов, но позволяет приблизить форму кривой э. д. с. к необходимой синусоидальной форме и уменьшает расход меди. В однослойных обмотках каждая активная сторона катушки занимает один паз и число катушек вдвое меньше числа пазов (см. рис. 3). В двухслойных обмотках все катушки имеют одинаковые размеры, одна сторона катушки лежит в верхней половине паза, другая — в нижней. Число катушек равно числу пазов. На рис. 2,в показана укладка двухслойной обмотки. Катушки обмотки фазы соединяют одну с другой со стороны лобовых частей. Начала и концы обмоток выводят в выводную коробку и обозначают: первая фаза Cl—С4, вторая С2—С5, третья С3—С6. В полузакрытые пазы статора с уложенной обмоткой вставляют деревянные или текстолитовые клинья, а всю обмотку пропитывают специальным лаком и покрывают изоляционной эмалью. <div>

    Асинхронный электродвигатель с короткозамкнутым ротором состоит из двух основных элементов: статора (представляет собой неподвижную, внешнюю часть электродвигателя) и ротора (подвижная, расположенная внутри статора часть электрической машины). Каждый из этих элементов состоит, в свою очередь, из сердечника и обмотки. Обмотку статора, которую подключают к сети, можно считать первичной, а обмотку ротора — вторичной.

    Сердечник статора собирается из совокупности листов, изготовленных из электротехнической стали и покрытых специальным лаком. Так уменьшаются потери на вихревые токи. В открытых пазах сердечника укладываются трехфазные обмотки, расположенные симметрично под углом 120 градусов.

    imageРис. 1. Короткозамкнутый ротор

    Ротор представляет собой вал, опирающийся на подшипники, на котором укреплены сердечник и обмотки. Сердечник ротора также выполнен из набора штампованных листов. Обмотка ротора изготовлена из медных или алюминиевых стержней (размещенных в пазах его сердечника), концы которых соединены накоротко с кольцами. Это и есть короткозамкнутая роторная обмотка, внешний вид которой напоминает беличье колесо (рис. 1).

    imageРис. 2. Электродвигатель серии АИР

    Принцип работы двигателя данного типа состоит в следующем. После подачи напряжения на обмотку статора появляется магнитный поток. Он изменяется с частотой, равной частоте используемого переменного тока. Из-за сдвига потоков в обмотках по времени и в пространстве результирующее поле получается вращающимся. Оно индуцирует ЭДС в проводниках ротора. В результате чего возникают токи, которые взаимодействуют с этим полем. Их взаимодействие создает пусковой момент. Ротор начинает вращаться в направлении вращающегося поля, но с другой частотой. Величину, характеризующуюся относительную разность этих частот, называют скольжением.

    Трехфазный асинхронный короткозамкнутый электродвигатель получил наибольшее распространение среди машин подобного типа благодаря своим качествам и конструктивным особенностям:

    • простоте конструкции;
    • высокой надежности и долговечности;
    • отсутствию подвижных контактов;
    • низкой стоимости и универсальности.

    Вместе с тем асинхронный двигатель с короткозамкнутым контуром имеет и существенные недостатки:

    • ток, возникающий при пуске, по своему значению превышает номинальный почти в 5–7 раз, что приводит к значительному снижению напряжения в сети;
    • затруднено регулирование числа оборотов ротора;
    • сравнительно небольшой пусковой момент.

    Асинхронные электродвигатели бывают различного технологического и конструктивного исполнения. В частности, электродвигатели АИР являются унифицированными для общепромышленных целей. Электродвигатель асинхронный трехфазный АИР имеет разные модификации. АИР представляет собой электродвигатель асинхронный трехфазный, характеристики которого аналогичны параметрам двигателей типа 5АМ, 5АИ, АМУ, 7АИ. Его устанавливают на вентиляторах, насосах, компрессорах и других электромеханических установках.

    Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту zakaz@cable.ru с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.  

    Оцените статью
    Рейтинг автора
    4,8
    Материал подготовил
    Максим Коновалов
    Наш эксперт
    Написано статей
    127
    А как считаете Вы?
    Напишите в комментариях, что вы думаете – согласны
    ли со статьей или есть что добавить?
    Добавить комментарий