Асинхронные электродвигатели с короткозамкнутым ротором. Конструктивные особенности и области применения

Популярность асинхронных электродвигателей очевидна. Между тем асинхронный двигатель купить человеку, неискушённому в электрике, дело далеко не простое. Базовые знания помогут правильно выбрать и купить асинхронный двигатель с короткозамкнутым ротором или же с фазным. Принцип работы указанных двигателей, их устройство — разные, несмотря на присутствие единого термина в названии. Рассмотрим разницу между асинхронным электродвигателем с токосъёмными кольцами и асинхронным двигателем с короткозамкнутым ротором.

Асинхронный двигатель — общий взгляд

Статистику наиболее широко используемых электрических моторов возглавляет именно трехфазный асинхронный двигатель.

image
Асинхронные моторы богатым ассортиментом присутствуют на рынке. Но какая из машин выглядит лучшей в техническом плане или применительно к условиям использования?

Практически 80% механических мощностей, используемых всеми отраслями экономики, обеспечиваются трехфазными асинхронными двигателями.

Деловая ставка на этот вид электрических машин обусловлена:

  • простой надёжной конструкцией,
  • низкой стоимостью,
  • хорошими рабочими характеристиками,
  • отсутствием сложных схем коммутации,
  • возможностями регулирования скорости.

Асинхронным называют двигатель по причине очевидной. Вращательный момент такой конструкции не даёт стабильной синхронности движения.

Мощность трехфазного асинхронного двигателя транспортируется от статора к ротору посредством индуктивной связи.

image
Конструктивный расклад: 1 — крышка корпуса передняя; 2 — стержень вала; 3 — арматура; 4 — лопасти захвата воздуха для охлаждения; 5 — сердечник; 6 — рама; 7 — клеммная коробка; 8 — крышка корпуса задняя

Электрическая машина наделена двумя основными деталями конструкции:

  1. Статор.
  2. Ротор.

Статор — стационарная часть конструкции с обмотками медным проводом, на которые подается трехфазный электрический ток.

Ротор — подвижная деталь конструкции (создаёт момент вращения). Передаёт механическое усилие нагрузке через стальной вал. Ротор трехфазного асинхронного двигателя классифицируется двумя видами:

  1. Короткозамкнутый.
  2. Фазный (фазовращающий, токосъёмный, раневой).

Соответственно, в зависимости от вида конструкции детали, трехфазный асинхронный двигатель классифицируется как:

  1. Мотор короткозамкнутого действия.
  2. Мотор фазного действия.

Конструкция статора для обоих видов двигателей, при этом, остаётся неизменной.

Набор основных деталей классической конструкции, которая встречается повсеместно. В зависимости от мощности могут изменяться лишь габаритные размеры компонентов

Другими частями — составляющими конструкции, являются: стальной вал, подшипники, крыльчатка охлаждения, клеммная коробка.

Особенности конструкции статора

Конструкция статора трехфазного асинхронного двигателя содержит трех базовых компонента:

  1. Раму.
  2. Сердечник.
  3. Обмотки возбуждения.

Статор выступает частью корпуса трехфазного асинхронного двигателя. Его основная функция — крепление сердечника статора и проводную намотку.

Внешняя область статора выполняет функцию покрытия, обеспечивает защиту и механическую прочность внутренним частям асинхронного двигателя.

Рама статора изготовлена из литой или свариваемой стали. Каркас трехфазного асинхронного двигателя нуждается в прочности и жесткости. Длина воздушного зазора между рамой и ротором очень мала.

Если не обеспечить прочность и жёсткость конструкции, нарушается концентрическое положение ротора. Такое состояние приведет к разбросу баланса магнитного натяжения.

Основная функция сердечника статора — перенос переменного магнитного потока. С целью уменьшения потерь вихревых токов, сердечник статора ламинируется. Создаются наслоённые тиснения толщиной около 0,4-0,5 мм.

Статорный сердечник — по сути, набор из многочисленных металлических пластин, плотно спрессованных друг с другом. Для намотки медного провода оставлены слоты

Все тиснения спрессованы в единое целое, образуя сердечник статора, жёстко скрепленный рамой. Штамповка обычно содержит элементы кремниевой стали, что способствует уменьшению гистерезисных потерь при работе двигателя.

Виды асинхронных моторов

Асинхронный двигатель с короткозамкнутым ротором претендует на лидерство среди всех видов моторов переменного тока. Это оборудование часто используется для нужд промышленности.

Практика применения показала главные свойства этого вида электродвигателей:

  • низкая рыночная стоимость,
  • надежность эксплуатации,
  • эффективность работы,
  • низкие требования в обслуживании.

Другой вид оборудования – асинхронный двигатель с токосъёмными кольцами (с фазным якорем), отличается куда меньшей потребностью применения в промышленности.

Мотор с токосъёмником: 1 — статорный сердечник; 2 — корпус (рама); 3 — кронштейн; 4 — вал; 5 — подшипник; 6 — якорь; 7 — группа щёток; 8 — устройство коммутации

Не более 5% — 10% моторов с токосъёмными кольцами используются в индустрии.

Объясняется этот момент следующими конструктивными недостатками асинхронных моторов с фазным вращением:

  • потребность частого обслуживания,
  • значительный расход меди,
  • сложность конструкции для ремонта.

Различия между видами асинхронных моторов

Одним из ярко выраженных различий между фазными и короткозамкнутыми двигателями видится фактор управления.

Электродвигатель, наделённый фазным токосъёмником, допускает включение в цепь внешнюю нагрузку (сопротивление) для управления скоростью двигателя.

В свою очередь схема двигателя с короткозамкнутым ротором не предполагает добавления любой внешней цепи, т.к. пазы ротора прорезаны вплоть до его торцевых граней.

Таким выглядит один из конструктивных вариантов токосъёмника на три фазы. Здесь следует отметить конструкционную особенность — несколько скошенное расположение слотов

Конструкция ротора фазовращающего типа представлена в виде ламинированного сердечника, наделённого слотами, расположенными параллельно один другому.

Каждый слот содержит по одному стержню и несёт трёхфазную изолированную обмотку. Причём число витков на стержнях равно числу витков обмоток статора.

Три концевых вывода обмотки подключаются, образуя нейтраль «звезды», а начальные выводы соединены с тремя медными кольцами, размещёнными на валу. С кольцами контактируют токосъёмные щётки.

Короткозамкнутый ротор изготовлен несколько иначе. Слоты на сердечнике не располагаются параллельно. Эти элементы ротора скошены под некоторым углом.

Элементы КЗР: 1 — алюминиевое кольцо; 2, 7 — вал стальной; 3, 6 — лопасти алюминиевые; 4 — алюминиевые стержни; 5 — ламинированный стальной сердечник

Сердечник сделан многослойным, с прорезями по всей длине окружности, замкнутыми на торцах сердечника медным или алюминиевым кольцом.

Конфигурация скошенных слотов короткозамкнутого ротора имеет свои преимущества:

  • снижаются шумы электродвигателя при работе,
  • обеспечивается плавный крутящий момент,
  • уменьшается магнитная блокировка статора по отношению к ротору,
  • увеличивается сопротивление ротора за счёт длинных проводников стержней.

Особенности для применения на практике

Изучая возможности применения тех или иных конструкций на практике, следует отметить более высокую эффективность моторов с короткозамкнутым ротором.

Относительно эффективности, что показывают асинхронные электромоторы с токосъёмными кольцами, короткозамкнутые выглядят явно лучше. Коэффициент мощности у фазных моторов также существенно ниже.

Однако преимущественной стороной фазных конструкций является возможность регулировать скорость вращения, тогда как короткозамкнутые модификации таких возможностей не дают.

Но регулировка скорости вращения асинхронного двигателя с короткозамкнутым ротором возможна при помощи частотного преобразователя.

Ещё одно преимущество асинхронного электродвигателя с фазным ротором – низкий пусковой ток. Для двигателей с короткозамкнутым ротором этот параметр существенно выше.

Поэтому электродвигатели с фазным ротором, как правило, используются на агрегатном оборудовании, где важен высокий пусковой момент:

  • подъёмники промышленные,
  • лифты гражданские,
  • краны строительные,
  • лебёдки производственные и т.п.

Тогда как другой вид моторов (короткозамкнутых) применяется часто в качестве приводов сверлильных, токарных станков и другой техники, где отсутствует потребность высокого пускового момента.

Учебное видео пособие по двигателям разного вида

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Скольжение s — это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр — критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Рекомендуем к прочтению — однофазный асинхронный двигатель. 

1 1 1 1 1 1 1 1 1 1 4.61 (458 Голоса)Просмотров: 91455

Из всего спектра выпускаемых в настоящее время электрических моторов наибольшее распространение получил двигатель асинхронный трёхфазный. Практически половина производимой в мире электроэнергии используется именно этими машинами. Они широко применяются в металлообрабатывающей и деревообрабатывающей промышленности. Асинхронный двигатель незаменим на фабриках и насосных станциях. Без таких машин не обойтись и в быту, где они используются и в другой домашней технике, и в ручном электроинструменте.

Область применения этих электрических машин расширяется с каждым днём, так как совершенствуются и сами модели, и используемые для их изготовления материалы.

Каковы же основные части этой машины

Разобрав двигатель асинхронный трехфазный, можно наблюдать два главных элемента.

1. Статор.

2. Ротор.

Одна из важнейших деталей — статор. На фото сверху эта часть двигателя расположена слева. Он состоит из следующих основных элементов:

1. Корпус. Он необходим для соединения всех деталей машины. Если двигатель небольшой, то корпус изготавливают цельнолитым. В качестве материала используют чугун. Применяются также сталь или сплавы алюминия. Иногда корпус малых двигателей совмещает функции сердечника. Если же двигатель имеет большие размеры и мощность, то корпус сваривают из отдельных частей.

2. Сердечник. Этот элемент двигателя запрессовывается в корпус. Служит он для улучшения качеств магнитной индукции. Выполняется сердечник из пластин электрической стали. Для того чтобы снизить потери, неизбежные при появлении вихревых токов, каждая пластина покрывается слоем специального лака.

3. Обмотка. Она размещается в пазах сердечника. Состоит из витков медной проволоки, которые собираются в секции. Соединённые в определённой последовательности, они образуют три катушки, которые в совокупности являются обмоткой статора. Подключается она непосредственно к сети, поэтому называется первичной.

Ротор — это подвижная часть двигателя. На фото он находится справа. Служит он для преобразования силы магнитных полей в механическую энергию. Состоит ротор асинхронного двигателя из следующих деталей:

1. Вал. На хвостовиках его закреплены подшипники. Они запрессовываются в щиты, крепящиеся болтами к торцовым стенкам коробки статора.

2. Сердечник, который собирается на валу. Состоит из пластин специальной стали, обладающей таким ценным свойством, как низкое сопротивление магнитным полям. Сердечник, обладая формой цилиндра, и является основой для укладки обмотки якоря. Роторная, или, как её ещё называют, вторичная обмотка получает энергию благодаря магнитному полю, которое появилось вокруг катушек статора при прохождении по ним электрического тока.

Двигатели по типу изготовления подвижной части

Различают двигатели:

1. Имеющие короткозамкнутую обмотку ротора. Один из вариантов исполнения этой детали показан на рисунке.

Асинхронный двигатель с короткозамкнутым ротором имеет обмотку, сделанную из алюминиевых стержней, которые располагаются в пазах сердечника. В торцевой части они замкнуты кольцами накоротко.

2. Электродвигатели, имеющие ротор, изготовленный с контактными кольцами.

У обоих типов асинхронных двигателей конструкция статора одинаковая. Различаются они только исполнением якоря.

Каков же принцип работы

Якорь трёхфазного асинхронного двигателя, исполненный подобным образом, приводится во вращение благодаря эффекту возникновения переменного магнитного поля в статорных катушках. Чтобы понять, каким образом это происходит, необходимо вспомнить физический закон самоиндукции. Он гласит, что вокруг проводника, по которому проходит поток заряженных частиц, возникает магнитное поле. Величина его будет прямо пропорциональна индуктивности провода и интенсивности протекающего в нём потока заряженных частиц. Кроме того, это магнитное поле формирует силу с определённой направленностью. Именно она нас и интересует, так как является причиной вращения ротора. Для эффективной работы двигателя необходимо иметь мощный магнитный поток. Создаётся он благодаря специальному способу монтажа первичной обмотки.

Известно, что источник питания имеет переменное напряжение. Следовательно, магнитное поле вокруг статора будет иметь такую же характеристику, напрямую зависящую от изменения тока в подающей сети. Примечательно то, что каждая фаза смещена одна относительно другой на 120˚.

Что происходит в обмотке статора

Каждая фаза сети питания подключается к соответствующей катушке статора, поэтому возникающее вокруг них магнитное поле будет смещено на 120˚. Источник питания имеет переменное напряжение, следовательно, вокруг катушек статора, которыми располагает асинхронный двигатель, будет возникать переменное магнитное поле. Схема асинхронного двигателя собирается так, чтобы магнитное поле, возникающее вокруг катушек статора, постепенно изменялось и последовательно переходило от одной обмотки к другой. Таким образом создаётся эффект вращающегося магнитного поля. Можно вычислить его частоту вращения. Измеряться она будет в оборотах за минуту. Определяется по формуле: n=60f/p, где f — это частота переменного тока в подключенной сети (Гц), p — соответствует числу пар полюсов, смонтированных на статоре.

Как работает ротор

Теперь необходимо рассмотреть, какие процессы возникают во вторичной обмотке. Асинхронный двигатель с короткозамкнутым ротором имеет конструкционную особенность. Дело в том, что к его якорной обмотке напряжение не подводится. Оно там возникает благодаря магнитоиндукционной связи с первичной обмоткой. Поэтому и происходит процесс, обратный тому, что наблюдался в статоре, в соответствии с законом, который гласит, что при пересечении проводника, а в нашем случае это короткозамкнутая обмотка ротора, магнитным потоком в нём возникает электрический ток. Откуда берётся магнитное поле? Оно возникло вокруг первичной катушки при подключении трёхфазного источника питания.

Соединим статор и ротор. Что получится?

Таким образом, имеем асинхронный короткозамкнутый двигатель с ротором, в обмотке которого проходит электрический ток. Он и будет причиной возникновения магнитного поля вокруг якорной обмотки. Однако полярность этого потока будет отличаться от созданного статором. Соответственно, и сила, образуемая им, будет вступать в противодействие с той, которая вызвана магнитным полем первичной обмотки. Это и приведёт в движение ротор, так как на нём собрана вторичная катушка, и хвостовики вала якоря закреплены в корпусе двигателя на подшипниках.

Рассмотрим ситуацию взаимодействия сил, возникающих от магнитных полей статора и ротора, с течением времени. Знаем, что магнитное поле первичной обмотки вращается и обладает определённой частотой. Созданная им сила будет перемещаться, имея аналогичную скорость. Это заставит асинхронный двигатель заработать. И его ротор будет свободно вращаться вокруг оси.

Эффект скольжения

Ситуация, когда силовые потоки ротора как бы отталкиваются от вращающегося магнитного поля статора, получила название скольжения. Следует отметить, что частота асинхронного двигателя (n1) всегда меньше той, с которой перемещается магнитное поле статора. Объяснить это можно так. Чтобы в роторной обмотке возник ток, она должна быть пересечена магнитным потоком с определённой угловой скоростью. И поэтому справедливо утверждение, что скорость вращения вала больше либо равна нулю, но меньше интенсивности перемещения магнитного поля статора. Ротор имеет частоту вращения, зависящую от силы трения в подшипниках, а также от величины отбора мощности с вала ротора. Поэтому он как бы отстаёт от магнитного поля статора. Именно из-за этого частота называется асинхронной.

Таким образом, электроэнергия питающего источника преобразовалась в кинетическую энергию вращающегося вала. Скорость его вращения прямо пропорциональна частоте тока питающей сети и количеству пар полюсов статора. Для увеличения частоты вращения якоря можно использовать частотные преобразователи. Однако работа этих устройств должна быть согласована с количеством пар полюсов.

Как подключить двигатель к источнику питания

Чтобы осуществить пуск асинхронного двигателя, его необходимо подключить к сети трёхфазного тока. Схема асинхронного двигателя собирается двумя способами. На рисунке показана схема соединения выводов двигателя, в которой статорные обмотки собраны способом «звезда».

На этом рисунке изображён другой способ соединения, именуемый «треугольник». Собираются схемы в клеммной коробке, закреплённой на корпусе.

Следует знать, что начала каждой из трёх катушек, их ещё называют обмотками фаз, именуются С1, С2, С3 соответственно. Аналогично подписываются концы, которые имеют названия С4, С5, С6. Если в клеммной коробке нет маркировки выводов, то начала и концы придётся определить самостоятельно.

Как сделать реверс

При возникновении потребности осуществить пуск асинхронного двигателя, изменив направление вращения якоря, надо просто поменять местами два провода подключаемого источника трехфазного напряжения.

Однофазный асинхронных двигателей

В быту проблематично использовать трёхфазные двигатели из-за отсутствия требуемого источника напряжения. Поэтому существует однофазный асинхронный двигатель. Он также имеет статор, но с существенным конструкционным отличием. Оно заключается в количестве и способе расположения обмоток. Это определяет и схему запуска машины.

Если однофазный асинхронный двигатель имеет статор с двумя обмотками, то расположены они будут со смещением по окружности под углом в 90˚. Катушки называются пусковой и рабочей. Соединяются они параллельно, но, чтобы создать условия для появления вращающееся магнитного поля, дополнительно вводится активное сопротивление или конденсатор. Это создаёт сдвиг фаз токов обмоток, близкий к 90˚, благодаря чему создаётся условие для образования вращающегося магнитного поля.

Если статор имеет только одну катушку, то подключённый к ней однофазный источник питания будет причиной пульсирующего магнитного поля. В замкнутой накоротко обмотке ротора появится переменный ток. Он станет причиной возникновения своего магнитного потока. Результирующая двух образовавшихся сил будет равна нулю. Поэтому для запуска двигателя, имеющего такую конструкцию, требуется дополнительный толчок. Создать его можно, подключив конденсаторную схему пуска.

Подключить двигатель к однофазной цепи

Изготовленный для работы от трёхфазного источника питания электромотор может работать и от домашней однофазной сети, но при этом существенно снизятся его характеристики, такие как КПД, коэффициент мощности. Кроме того, снизятся мощность и пусковые показатели.

Если же без подключения не обойтись, то требуется из трёх обмоток статора собрать схему, где их будет только две. Одна рабочая, а другая пусковая. Например, есть три катушки с началами С1, С2, С3 и концами С4, С5, С6 соответственно. Для создания первой (рабочей) обмотки двигателя объединяем концы С5 и С6, а их начала С3 и С2 подключаем к источнику однофазного тока, например, бытовой сети 220 вольт. Роль второй, пусковой обмотки, будет выполнять оставшаяся незадействованная катушка стартера. Она подключается к источнику питания через конденсатор, соединённый с ней последовательно.

Параметры асинхронного двигателя

При подборе таких машин, а также при дальнейшей их эксплуатации необходимо учитывать характеристики асинхронного двигателя. Они бывают энергетические — это коэффициент полезного действия, коэффициент мощности. Важно учитывать и механические показатели. Основным из них считается зависимость между скоростью вращения вала и рабочим усилием, прикладываемым к нему. Существуют ещё пусковые характеристики. Они определяют пусковой, минимальный и максимальный моменты и их соотношение. Важно также знать, каков пусковой ток асинхронного двигателя. Для наиболее эффективного использования двигателя необходимо учитывать все эти параметры.

Нельзя оставить без внимания вопрос энергосбережения. В последнее время он рассматривается не только с позиции уменьшения эксплуатационных затрат. Экономичность электродвигателей снижает уровень экологических проблем, связанных с производством электроэнергии.

Перед производителями постоянно ставятся задачи разработки и выпуска энергосберегающих двигателей, повышения эксплуатационного ресурса, уменьшения шумового уровня.

Улучшить энергосберегающие показатели можно путём снижения потерь при эксплуатации. А они напрямую зависят от рабочей температуры машины. Кроме того, совершенствование этой характеристики неизбежно приведёт к увеличению срока эксплуатации двигателя.

Снизить температуру обмоток можно, применяя вентилятор наружного обдува, закреплённый на хвостовике вала ротора. Но это приводит к неизбежному повышению шума, производимого двигателем при работе. Особенно ощутим этот показатель при высокой скорости вращения ротора.

Таким образом, видно, что асинхронный двигатель имеет один существенный недостаток. Он не способен поддерживать постоянную частоту вращения вала при возрастающих нагрузках. Зато такой двигатель имеет множество преимуществ по сравнению с образцами электродвигателей других конструкций.

Во-первых, он имеет надёжную конструкцию. Работа асинхронного двигателя не вызывает никаких сложностей при его использовании.

Во-вторых, асинхронный двигатель экономичен в производстве и эксплуатации.

В-третьих, эта машина универсальна. Имеется возможность её использования в любых устройствах, которые не требуют точного поддержания частоты вращения вала якоря.

В-четвёртых, двигатель с асинхронным принципом действия востребован и в быту, получая питание только от одной фазы.

Похожие статьи

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

По типу смесеобразования ДВС делятся на: с внешним смесеобразованием (карбюраторные) и с непосредственным впрыском топлива в цилиндры или впускной коллектор (инжекторные). По типу применяемого топлива различают ДВС работающие на бензине, сжиженном или сжатом природном газе, на спирте (метаноле) и пр.

Воздушно-реактивные двигатели:

  • прямоточные реактивные (ПВРД);
  • пульсирующие реактивные (ПуВРД);
  • газотурбинные двигатели:
    • турбореактивные (ТРД);
    • двухконтурные (ТРДД);
    • турбовинтовые (ТВД);
    • турбовинтовентиляторные ТВВД;

Ракетные двигатели

  • жидкостные ракетные двигатели;
  • твердотопливные ракетные двигатели;
  • ядерные ракетные двигатели;
  • некоторые типы электроракетных двигателей.

По применению

В связи с принципиально различными требованиями к двигателю в зависимости от его назначения, двигатели идентичные по принципу действия, могут называться «корабельными», «авиационными», «автомобильными» и тому подобными.

Категория «Двигатели» в патентоведении одна из наиболее активно пополняемых. В год по всему миру подаётся от 20 до 50 заявок в этом классе. Часть из них отличаются принципиальной новизной, часть — новым соотношением известных элементов. Новые же по конструкции двигатели появляются очень редко.

Как проверить двигатель перед запуском

Перед тем, как запустить асинхронный двигатель в работу, желательно его проверить на работоспособность. С чего же начать?

Внешний осмотр двигателя. Проверьте, нет ли сколов, вмятин, покрутите вал двигателя. Он должен крутиться плавно и без рывков в обе стороны. Этим действием вы проверяете подшипники, на которых держится ротор двигателя. Если вал двигателя подклинивает, то на это могут быть несколько причин: разбиты посадочные места под подшипники, убитые подшипники, либо ротор затирает статор. Для того, чтобы выяснить причину, нужно будет полностью разобрать двигатель и выяснить реальную проблему. Если все ок, то двигаемся к следующему шагу.

Проверяем обмотки двигателя. Для этого берем мультиметр, ставим его на измерение сопротивления и проверяем сопротивление обмоток. Если обмотки подключены по схеме “звезда”, то нам будет достаточно замерять сопротивление между клеммами, куда подается напряжение питания. Делается это в три этапа.

Раз.

Два.

Три.

Во всех трех случаях сопротивление должно быть одинаково. Допускается отклонение в несколько Ом.

Этими тремя действиями мы проверили обмотки нашего двигателя и убедились, что они все целые.

И заключительный шаг. Проверяем, не звонятся ли обмотки на землю. Так как все обмотки так или иначе соединяются между собой, достаточно будет встать щупом мультиметра на любую из обмоток, а вторым щупом встать на корпус двигателя. Переключатель на мультиметре поставить на измерение МОм.

В идеале должно получиться бесконечно большое сопротивление, в реале от 100 МОм и выше. Если сопротивление очень маленькое, что то около 1-10 Ом, то это означает, что какая-то из обмоток двигателя звонится на землю, что категорически недопустимо. На практике если же сопротивление меньше 1 МОм, то надо выяснить причину и устранить ее. Скорее всего в двигатель попала влага, грязь, либо произошел пробой диэлектрика медного провода. В этом случае поможет только полная разборка и визуальное выяснение причины.

Все те же самые операции применяются и к двигателю со схемой подключения “треугольник”.

Большинство материала для статьи” асинхронный двигатель” было взято из видео ниже. Обязательно к просмотру.

No tags for this post.

Асинхронный двигатель простой и надежный и от этого очень часто используется на производстве и в бытовой технике, от привода задвижек до вращения барабана в стиральной машине. В этой статье мы простыми словами расскажем о том какие бывают асинхронные электродвигатели, что это такое и как работает данный тип электрических машин.

Содержание:

Виды

Асинхронные двигатели (АД) делятся на две основные группы:

  • с короткозамкнутым ротором (КЗ);
  • с фазным ротором.

Если опустить нюансы, то отличие заключается в том, что у АД с короткозамкнутым ротором нет щеток и выраженных обмоток, он менее требователен в обслуживании. Тогда как в асинхронных двигателях с фазным ротором есть три обмотки, соединенные с контактными кольцами, ток с которых снимается щетками. В отличие от предыдущего лучше поддаётся регулированию момента на валу и проще реализуется плавный запуск для снижения пусковых токов.

В остальном двигатели классифицируют:

  • по количеству питающих фаз — однофазные и двухфазные (используются в быту при питании от сети 220В), и трёхфазные (получили наибольшее распространение на производстве и в мастерских).
  • по способу крепления — фланцевое или на лапах.
  • по режиму работы — для длительного, кратковременного или повторно-кратковременного режима.

И ряду других факторов, которые влияют выбор конкретного изделия для использования в конкретных условиях.

Об однофазных электродвигателях можно сказать много: некоторые из них запускаются через конденсатор, а некоторым требуется и пусковая и рабочая ёмкость. Есть и варианты с короткозамкнутым витком, которые работают без конденсатора и применяются, например, в вытяжках. Если вам интересно — пишите в комментариях и мы напишем об этом статью.

Устройство

По определению «асинхронным» называют двигатель переменного тока, у которого ротор вращается медленнее чем магнитное поле статора, то есть несинхронно. Но это определение не слишком информативно. Чтобы его понять нужно разобраться как устроен этот двигатель.

Асинхронный двигатель, как и любой другой состоит из двух основных частей — ротор и статор. «Для чайников» в электрике расшифруем:

  • Статором называют неподвижную часть любого генератора или электродвигателя.
  • Ротором называют вращающуюся часть двигателя, которая и приводит в движение механизмы.

image

Статор состоит из корпуса, торцы которого закрываются подшипниковыми щитами, в которых установлены подшипники. В зависимости от назначения и мощности двигателя используют подшипники скольжения или качения. В корпусе расположен сердечник, на нём установлена обмотка. Её называют обмоткой статора.

image

Так как ток переменный, чтобы снизить потери из-за блуждающих токов (токи Фуко) сердечник статора набирают из тонких стальных пластин, изолированных друг от друга окалиной и скрепленных лаком. На обмотки статора подают питающее напряжение, ток протекающий в них называют током статора.

Количество обмоток зависит от числа питающих фаз и конструкции двигателя. Так у трёхфазного двигателя минимум три обмотки, соединённых по схеме звезды или треугольника. Их количество может быть больше, и оно влияет на скорость вращения вала, но об этом мы поговорим далее.

А вот с ротором дела обстоят интереснее, как уже было сказано он может быть или короткозамкнутым, или фазным.

image

Короткозамкнутый ротор — это набор металлических стержней (обычно алюминиевых или медных), на рисунке выше обозначены цифрой 2, впаянных или залитых в сердечник (1) замкнутых между собой кольцами (3). Такая конструкция напоминает колесо, в котором бегают одомашненные грызуны, отчего её часто называют «беличьей клеткой» или «беличьим колесом» и такое название не жаргонное, а вполне литературное. Для уменьшения высших гармоник ЭДС и пульсации магнитного поля, стержни укладывают не вдоль вала, а под определенным углом относительно оси вращения.

Фазный ротор отличается от предыдущего тем, что на нем уже есть три обмотки, как на статоре. Начала обмоток подключаются к кольцам, обычно медным, они напрессованы на вал двигателя. Позже мы кратко объясним зачем они нужны.

image

В обоих случаях, один из концов вала соединяют с приводимым в движение механизмом, он выполняется конической или цилиндрической формы с проточками или без, для установки фланца, шкива и других механических приводных деталей.

На «задней» части вала закрепляют крыльчатку, которая необходима для обдува и охлаждения, поверх крыльчатки на корпус надевается кожух. Таким образом холодный воздух направляется вдоль ребер асинхронного двигателя, если эта крыльчатка по какой-то причине не будет вращаться — он перегреется.

image

Конструкция первого асинхронного двигателя была разработана М.О. Доливо-Добровольским и запатентовал он её в 1889 г. Без особых изменений дожила до настоящего времени.

Принцип работы

Асинхронные электрические машины часто называют индукционными, это связано с их принципом действия. Любой электродвигатель приводится во вращение в результате взаимодействия магнитных полей ротора и статора, а также благодаря силе Ампера. Магнитное поле, в свою очередь, может существовать либо вокруг постоянного магнита, либо вокруг проводника, через который протекает ток. Но как работает именно асинхронная машина?

В асинхронном двигателе в отличие от других нет как таковой обмотки возбуждения, тогда как у него появляется магнитное поле? Ответ прост: асинхронный электродвигатель – это трансформатор.

Рассмотрим принцип его работы на примере трёхфазной машины, так как именно они встречаются чаще остальных.

На рисунке ниже вы видите расположение обмоток на сердечнике статора трёхфазного асинхронного двигателя.

image

В результате протекания трёхфазного тока в обмотках статора появляется вращающееся магнитное поле. Из-за сдвига фаз ток протекает то по одной, то по другой обмотке, в соответствии с этим возникает магнитное поле, полюса которого направлены согласно правилу правой руки. И в соответствии с изменением тока в той или иной обмотке полюса направляются в соответствующую сторону. Что иллюстрирует следующая анимация:

В простейшем (двух полюсном) случае обмотки уложены таким образом, что каждая из них смещена на 120 градусов относительно предыдущей, как и угол сдвига фаз напряжения в сети переменного тока.

Скорость вращения магнитного поля статора принято называть синхронной. Подробнее о том, как оно вращается, и почему вы узнаете из следующего видеоролика. Отметим, что в двухфазных (конденсаторных) и однофазных электродвигателях — оно не вращающееся, а эллиптическое или пульсирующее, а обмоток не 3, а 2.

Если рассматривать асинхронный электродвигатель с короткозамкнутым ротором, то магнитное поле статора индуцирует в его стержнях ЭДС, так как они замкнуты, то начинает протекать ток. Из-за чего также возникает магнитное поле.

В результате взаимодействия двух полей и силе Ампера, действующей на ротор, он начинает вращаться вслед за вращающимся магнитным полем статора, но при этом всегда немного отставая от скорости вращения МП статора, это отставание называют скольжением.

Если скорость вращения магнитного поля называют синхронной, то скорость вращения ротора уже асинхронной, от чего он и получил такое название.

У АД с фазным ротором дела обстоят подобным образом, за исключением того, что к его кольцам подключают реостат, который после того как двигатель выйдет на рабочий режим выводится из цепи и обмотки замыкаются накоротко. Это показано на схеме ниже, но вместо реостата использованы постоянные резисторы, подключаемые или шунтируемые контакторами КМ3, КМ2, КМ1.

image

Такой подход позволяет осуществлять плавный запуск и снижать пусковые токи, за счет увеличения активного электрического сопротивления ротора.

imageПодведем итоги:

  1. Ток в обмотках статора порождает магнитное поле.
  2. Магнитное поле приводит к возникновению тока в роторе.
  3. Ток в роторе к возникновению поля вокруг него.
  4. Так как поле статора вращается, то из-за своего поля ротор начинает вращаться за ним.

Скольжение и скорость вращения

Частота вращения магнитного поля статора (n1) больше, чем частота вращения ротора (n2). Разница между ними называется скольжением, а обозначается латинской буквой S и вычисляется по формуле:

S=(n1-n2)*100%/n1

Скольжение не является недостатком этого электродвигателя, поскольку если бы его вал вращался с той же частотой, что и магнитное поля статора (синхронно), то в его стержнях не индуцировался бы ток, и он бы просто не стал вращаться.

Теперь о более важном понятии — частота вращения ротора асинхронного электродвигателя. Она зависит от 3 величин:

  • частота напряжения питающей сети (f);
  • число пар магнитных полюсов (p);
  • скольжение (S).

Число пар магнитных полюсов определяет синхронную скорость вращения поля и зависит от числа обмоток статора. Скольжение зависит от нагрузки и конструкции конкретного электродвигателя и лежит в пределах 3-10%, то есть асинхронная скорость совсем немного меньше синхронной. Ну а частота переменного тока у нас фиксирована и равняется 50 Гц.

Поэтому частоту вращения вала асинхронного двигателя сложно регулировать, вы можете воздействовать лишь на частоту питающей сети, то есть установив частотный преобразователь. Можно и понижать напряжение статора, но тогда уменьшается мощность на валу, тем не менее такой приём применяют при пуске АД с переключением обмоток со звезды на треугольник для уменьшения пусковых токов.

Частота вращения поля статора (синхронная скорость) определяется по формуле:

n=60*f/p

Так в двигателе с одной парой магнитных полюсов (два полюса) синхронная скорость равна:

60*50/1=3000 об/мин

Наиболее распространены следующие варианты электродвигателей с:

  • одной парой полюсов (3000 об/мин);
  • двумя (1500 об/мин);
  • тремя (1000 об/мин);
  • четырьмя (750 об/мин).

Реальная скорость вращения ротора будет несколько ниже, на реальном асинхронном двигателе она указывается на шильдике, например, здесь – 2730 об/мин. Несмотря на это, в народе такой асинхронный двигатель будут называть согласно синхронной скорости или просто «трёхтысячник».

Тогда его скольжение равняется:

3000-2730*100%/3000=9%

Сфера применения

Асинхронный электродвигатель нашел применение во всех сферах деятельности человека. Те что питаются от одной фазы (от 220В) можно встретить в исполнительных механизмах малой мощности или в бытовой технике и инструменте, например:

  • в стиральной машине типа «малютка» и других старых советских моделей;
  • в бетономешалке;
  • в вентиляторе;
  • в вытяжке;
  • и даже в газонокосилках верхнего ценового сегмента.

На производстве в трёхфазных сетях:

  • автоматические задвижки;
  • грузоподъёмные механизмы (краны и лебедки);
  • вентиляция;
  • компрессоры;
  • насосы;
  • дерево- и металообрабатывающие станки и другое.

Также АД используется в электротранспорте, а в последнее время в интернете активно рекламируют асинхронный двигатель с обмоткой типа «Славянка» и, так называемое, мотор-колесо Дуюнова, о чем вы можете узнать из видеоролика разработчика.

Область применения асинхронных двигателей настолько обширна, что один только список будет длиннее чем эта статья, поэтому каждый электрик должен знать, как он устроен, для чего нужен и где применяется. Подведем итоги и перечислим плюсы и минусы этих устройств.

Плюсы:

  1. Простая конструкция.
  2. Низкая стоимость.
  3. Почти не требуют обслуживания.

Главный недостаток — сложность регулировки оборотов, по сравнению с теми же двигателями постоянного тока или универсальными коллекторными машинами. Соответственно и сложно организовать плавный пуск больших машин, и чаще это делают с помощью дорогого частотного преобразователя.

На этом мы и заканчиваем рассмотрение асинхронных электродвигателей и их области применения. Надеемся, после прочтения статья вам стало понятно, что это такое и как работает данная электрическая машина!

Материалы по теме:

—>

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий