Закон полного тока простыми словами

Главная Коллекция “Revolution” Физика и энергетика Закон полного тока

Сущность закона полного тока, история его открытия и первооткрыватель. Отличительные черты соленоидального поля, его расчет. Применение закона полного тока для расчета магнитного поля. Неразветвленная магнитная цепь, её аналогия с электрической цепью.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 03.10.2014
Размер файла 191,8В K

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д. PPT, PPTX и PDF-файлы представлены только в архивах. Рекомендуем скачать работу.

Пусть произвольная замкнутая линия l пронизывает проводник с током (рисунок 1), то есть они сцепляются друг с другом как два звена цепи. Вокруг проводника возникает магнитное поле.

Рисунок 1. Закон полного тока

Построим вектор напряженности H, создаваемой током в точке А, расположенной на линии l. Если линия охватывает несколько проводников с током, то для каждого тока строятся векторы напряженности в данной точке линии. Складывая геометрически отдельные векторы напряженности, находим вектор результирующей напряженности магнитного поля.

Вектор результирующей напряженности H в общем случае образует с элементом длины Δl угол α. Поэтому продольная или тангенциальная составляющая Hl результирующей напряженности H будет:

Hl = H × cos α.

Если разбить замкнутую линию на n элементов длины и сложить произведения длин всех элементов на тангенциальные составляющие результирующей напряженности в этих элементах, получим следующую сумму:

Эту сумму можно представить так:

где знак  означает сумму от k = 1 до k = n.

В теоретической электротехнике доказывается, что указанная сумма равна алгебраической сумме токов, сцепляющихся с контуром суммирования подобно тому, как сцепляются между собой два смежных звена цепи.

Следовательно, можно записать так:

Эта формулировка называется законом полного тока. Для случая, когда контур многократно пронизывает один и тот же виток, как, например,  при наличии обмотки с числом витков w, полный ток будет:

Если замкнутый контур суммирования совпадает с магнитной линией, то вектор напряженности в любой точке контура будет направлен по касательной к элементу длины Δl.

В этом случае

и закон полного тока принимает вид:

Если значение напряженности для всех точек контура при этом одинаково, а сумма Δl по контуру равна l, то формула закона полного тока запишется так:

Закон полного тока является основным законом при расчете магнитных цепей и дает возможность в некоторых случаях легко определять напряженность поля.

Например, применяя закон полного тока для определения напряженности на расстоянии a от прямолинейного проводника с током, имеем:

l = 2 × π × a .

Поэтому

H × 2 × π × a = I ,

откуда

Рисунок 2. К определению напряженности поля катушки, намотанной на кольцо

Чтобы определить напряженность поля внутри катушки, намотанной на кольцо (рисунок 2), воспользуемся опять законом полного тока. Контуром здесь является окружность радиуса r. Контур пронизывает w витков с токами одного направления:

H × 2 × π × r = I × w .

Обозначая длину средней линии кольца через l = 2 × π × r , получаем:

H × l = I × w ,

откуда

Таким образом, напряженность поля катушки пропорциональна произведению числа ампер на число витков или числу ампер-витков. I × w называется намагничивающей силой и обозначается буквой F. Так как w – число отвлеченное, то намагничивающая сила измеряется в амперах.

Магнитная индукция внутри катушки будет:

Если площадь поперечного сечения кольца по всей длине одинакова и равна S, то, зная магнитную индукцию B, можно определить магнитный поток Ф:

Эту же формулу можно представить в ином виде:

По своему строению эта формула напоминает формулу Ома. Выше было указано, что произведение I × w называется намагничивающей силой. Выражение  стоящее в знаменателе, называется магнитным сопротивлением и обозначается буквой Rм:

Из этой формулы видно, что магнитное сопротивление пропорционально длине пути и обратно пропорционально сечению материала, по которому проходит магнитный поток.

Таким образом, магнитный поток Ф пропорционален намагничивающей силе F и обратно пропорционален магнитному сопротивлению Rм:

Рисунок 3. Закон полного тока для вакуума

Источник: Кузнецов М.И., “Основы электротехники” – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

В радиоэлектронике применяется ряд законов и постулатов для анализа, как цепей, так и устройств. Сталкиваясь с необходимостью исследования магнитных цепей, применяют закон полного тока для магнитного поля.

Магнитные потоки трансформатора

Суть закона полного тока

Данный постулат характеризует взаимосвязь между током электрической цепи и магнитным полем, появляющимся в связи с протеканием этого тока.

Контур с проводниками под током

Для понимания закона полного тока необходимо представить некоторое число проводников, по которым протекает электрический ток. Множество проводников охватывает некоторый контур, и, соответственно, ограничивает мнимую поверхность S, согласно картинке выше. Направление огибания контура, согласно правилу буравчика, ориентировано по ходу часовой стрелки. Поскольку множество токов является величиной дискретной, то закон полного тока определяется как связь суммарного электрического тока через закольцованный контур L и напряженности магнитного поля, сформированного этим током, и определяется по формуле:

∫LHdl=I∑, где:

  • H – вектор напряженности магнитного поля;
  • dl – направленный элементарный линейный участок, взятый вдоль контура;
  • I∑ – суммарная сила тока.

Сущностью закона полного тока является то, что передвижение вектора напряженности магнитного поля по кольцевому контуру приравнивается сумме всех токов, которые находятся в этом контуре. Это выражение является интегральной формой закона полного тока.

Дополнительная информация. Интеграл произведения вектора напряженности магнитного поля и направленного элементарного линейного участка по кольцевому контуру называется циркуляцией вектора Н.

Если заданный контур пронизывает непрерывный пространственный поток движущихся заряженных частиц с плотностью электрического тока J, то общая величина тока, проходящего сквозь площадку, измеряется по выражению:

I∑=∫sJdS, где dS – элементарная площадка контура S.

Произведение JdS характеризует поток вектора плотности тока J, проходящего через поверхность dS.

Помимо интегральной формы, применяется дифференциальная форма закона полного тока. С целью получения дифференциальной формы выражения полного тока следует заменить интеграл по контуру L на интеграл по площади S. Поскольку теорема Стокса в векторном анализе выражается как:

∫LАdl=∫s rotАdS, то ∫LНdl=∫s rotНdS.

Объединив эти выражения с законом полного тока, в интегральной форме получается:

∫s rotНdS =∫s J∑dS.

Поскольку контур L взят произвольным образом, то интегралы в левой и правой частях выражения равны, если равны подынтегральные выражения. Исходя из этого, выражение преобразовывается в:

rotН=J∑.

Данной формулой выражается закон полного тока в дифференциальной форме.

Практическое применение в расчетах

Закон Ома для переменного тока

Закон полного тока является основным законом при расчете магнитных цепей и дает возможность без особых усилий определять напряженность поля.

Примеры магнитных цепей

Магнитная цепь являет собой комплекс физических тел, обладающих сильно выраженными магнитными свойствами, магнитодвижущих сил и других условий, по которым смыкается магнитный поток. Магнитодвижущая сила определяется как произведение количества витков катушки на протекающий в ней электрический ток:

F=Iω, где:

  • F – магнитодвижущая сила;
  • ω – количество витков в катушке;
  • I – электрический ток.

Подобно тому, как электродвижущая сила электрической цепи провоцирует возникновение тока, так и магнитодвижущая сила магнитной цепи вызывает магнитный поток. Направление магнитодвижущей силы в схемотехнике определяется на основании правила буравчика.

Параметры, описывающие характеристики магнитной или электрической цепи, являются тождественными. Аналогичными являются и мероприятия по расчету цепей. Постоянные токи в электрических цепях возникают благодаря электродвижущей силе. В магнитных цепях эту функцию выполняет магнитодвижущая сила обмоток. Характеристика сопротивления току в электрической цепи имеет свою аналогию в магнитной цепи в виде магнитного сопротивления.

Неразветвленная магнитная цепь

Согласно закону полного тока, выражение, описывающее процессы в магнитной цепи (рис. выше), выглядит так:

Iω=H1L1+H2L2, где:

  • H1 – напряженность поля первого участка;
  • H2 – напряженность поля второго участка;
  • L1 – длина первого однородного участка;
  • L2 – длина второго однородного участка.

Поскольку напряженность магнитного поля и магнитная индукции на первом и втором участках равны:

  1. H1=B1/µа1, где:
  • B1 – магнитная индукция;
  • µа1 – магнитная проницаемость первого участка.
  1. B 1=Φ/S1, где:
  • Φ – магнитный поток;
  • S1 – площадь поперечного сечения первого участка.
  1. H2=B2/µа2, где:
  • B2 – магнитная индукция второго участка;
  • µа2 – магнитная проницаемость второго участка.
  1. B 2=Φ/S2, где:
  • Φ – магнитный поток;
  • S2 – площадь поперечного сечения второго участка.

выражение, описывающее закон полного тока, преобразовывается в:

Iω=ΦL1/µа1S1+ ΦL2/µа2S2=ΦRм1+ΦRм2, где:

  • Rм1=L1/µа1S1 – магнитное сопротивление первого участка;
  • Rм2=L2/µа2S2 – магнитное сопротивление второго участка.

Проводя аналогии с электрической цепью, произведение магнитного потока на магнитное сопротивление является магнитным напряжением:

Uм2=ΦRм2=H2L2.

Если выделить из формулы магнитный поток, получается формула, представляющая собой закон Ома для магнитной цепи:

Φ= Iω/Rм1+Rм2= Iω/∑Rм.

Для магнитной цепи, не имеющей магнитодвижущей силы, выражение будет выглядеть как:

Uм=ΦRм=HL.

Аналогично электрическим цепям на магнитные цепи распространяются постулаты Кирхгофа:

  1. Сумма магнитных потоков, втекающих в узел, равна сумме магнитных потоков, вытекающих из узла. Выражение выглядит как ∑Φк=0;
  2. Сумма магнитодвижущих сил, находящихся в контуре, равна сумме падений напряжений на всех отрезках цепи, что соответствует выражению ∑Iω=∑Uм=∑HL.

Закон полного тока для магнитных цепей стоит на одном уровне с основными законами, касающимися электрических цепей. Понимание закона полного тока позволит с легкостью проводить расчет и подбор необходимых устройств, в основе работы которых лежат магнитные потоки.

Видео

  • Автор

    Карина Хачатурян

  • Рубрика

    11 класс, ЕГЭ/ОГЭ

  • Дата публикации

    21.05.2021

  • Просмотры

    7082

Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.

Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.

Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​B​, площади поверхности ​S​, пронизываемой данным потоком, и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Магнитный поток

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м^2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α < 90°) или отрицательным (α > 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки

Вот, что показали эти опыты:

  1. Индукционный ток возникает только при изменении линий магнитной индукции.
  2. Направление тока будет различно при увеличении числа линий и при их уменьшении.
  3. Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.

Заголовок

        image

Георг Симон Ом

    Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.

   Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Закон Ома для участка цепи

   Строгая формулировка закона Ома может быть записана так:

      сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.

image

   Формула закона Ома записывается в следующем виде:

image

где

I – сила тока в проводнике, единица измерения силы тока – ампер [А];

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

R – электрическое сопротивление проводника, единица измерения электрического сопротивления – ом [Ом].

image

    Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза

image

    И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.

image

    Рассмотрим простейший случай применения закона Ома.

    Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:

image

      Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.

image

Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.

Где и когда можно применять закон Ома?

       Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

    Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

Значение Закона Ома

     Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении. Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.

   Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.

    Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:

       Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

Задача 1.1

  Рассчитать силу тока, проходящую по медному проводу длиной 100 м, площадью поперечного сечения 0,5 мм2, если к концам провода приложено напряжение 12 B.

  Задачка простая, заключается в нахождении сопротивления медной проволоки с последующим расчетом силы тока по формуле закона Ома для участка цепи. Приступим.

Закон Ома для полной цепи 

  Формулировка закона Ома для полной цепи – сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи , где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.

  Здесь могут возникнуть вопросы. Например, что такое ЭДС?

    Электродвижущая сила – это физическая величина, которая характеризует работу внешних сил в источнике ЭДС. К примеру, в обычной пальчиковой батарейке, ЭДС является химическая реакция, которая заставляет перемещаться заряды от одного полюса к другому. Само слово электродвижущая говорит о том, что эта сила двигает  заряд.

  В каждом источнике присутствует внутреннее сопротивление r, оно зависит от параметров самого источника. В цепи также существует сопротивление R, оно зависит от параметров самой цепи.

  Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.

Для закрепления материала, решим две задачи на формулу закона Ома для полной цепи.

Задача 2.1

  Найти силу тока в цепи, если известно что сопротивление цепи 11 Ом, а источник подключенный к ней имеет ЭДС 12 В и внутреннее сопротивление 1 Ом.

  Теперь решим задачу посложнее.

Задача 2.2

  Источник ЭДС подключен к резистору сопротивлением 10 Ом с помощью медного провода длиной 1 м и площадью поперечного сечения 1 мм2. Найти силу тока, зная что ЭДС источника равно 12 В, а внутреннее сопротивление 1,9825 Ом.

Приступим.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий