Единица измерения мощности Ватт. Калькулятор зависимости мощности от сопротивления и напряжения

В цепь переменного электрического тока входят активные (содержащие внутренние источники энергии) и пассивные элементы (потребители энергии). К пассивным элементам относят резисторы и реактивные устройства.

Пассивные элементы

Пассивные элементы

Виды пассивных элементов

В электротехнике рассматривают два типа резисторов: активное и реактивное сопротивление. Активным – обладают приборы, в которых энергия электрического тока преобразуется в тепловую. В физике оно обозначается символом R. Единица измерения – Ом.

Рассчитать его можно, используя закон Ома:

R = U/I.

Этой формулой можно пользоваться для расчёта по мгновенным значениям тока и напряжения, максимальным или действующим.

Реактивные устройства энергию не рассеивают, а накапливают. К ним относятся:

  • катушка индуктивности;
  • конденсатор.

Реактивное сопротивление обозначается символом Х. Единица измерения – Ом.

Катушка индуктивности

Представляет собой проводник, выполненный в форме спирали, винта или винтоспирали. Благодаря высокой инерционности, прибор используют в схемах, которые применяются для уменьшения пульсаций в цепях переменного тока и колебательных контурах, для создания магнитного поля и т.д. Если она имеет большую длину при небольшом диаметре, то катушку называют соленоидом.

Схема включения

Схема включения

Для вычисления падения напряжения (U) на концах катушки используют формулу:

U = –L·DI/Dt, где:

  • L – индуктивность прибора, измеряется в Гн (генри),
  • DI – изменение силы тока (измеряется в амперах) за промежуток времени Dt (измеряется в секундах).

Внимание! При любом изменении тока в проводнике возникает ЭДС самоиндукции, которая препятствует этому изменению.

Вследствие этого в катушке возникает сопротивление, которое называется индуктивным.

В электротехнике обозначается ХL и рассчитывается по формуле:

ХL = w · L,

где w – угловая частота, измеряется в рад/с.

Угловая частота является характеристикой гармоничного колебания. Связана с частотой f (количество полных колебаний в секунду). Частота измеряется в колебаниях в секунду (1/с):

w = 2 · p · f.

Если в схеме используется несколько катушек, то при их последовательном соединении общее ХL для всей системы будет равно:

XL = XL1 + XL2 + …

В случае параллельного соединения:

1/XL = 1/XL1 + 1/XL2 + …

Закон Ома для такого соединения имеет вид:

XL=UL/I,

где UL – падение напряжения.

Помимо индуктивного, устройство обладает и активным R.

Электрический импеданс в этом случае равен:

Z = XL + R.

Емкостной элемент

В проводниках и обмотке катушки, кроме индуктивного и активного сопротивлений, присутствует и емкостное, которое обусловлено наличием ёмкости в этих приборах. Кроме резистора и катушки, в схему может быть включен конденсатор, который состоит из двух металлических пластин, между которыми размещён слой диэлектрика.

К сведению. Электрический ток протекает за счёт того, что в устройстве проходят процессы заряда и разряда пластин.

Схема подключения

При максимальном заряде на пластинах прибора:

U = max, I = 0.

За счёт того, что резистивное устройство может накапливать энергию, его используют в приборах, которые стабилизируют напряжение в цепи.

Возможность накапливать заряд характеризуется ёмкостью.

Реактивное сопротивление конденсатора (ХС) можно рассчитать по формуле:

XC = 1/(w·C), где:

  1. w – угловая частота,
  2. С – ёмкость конденсатора.

Единица измерения ёмкости – Ф (фарада).

Учитывая, что угловая частота связана с циклической частотой, расчет значения реактивного сопротивления конденсатора можно выполнить по формуле:

XC=1/(2·p·f·C).

Если в цепи последовательно соединены несколько устройств, то общее XС системы будет равно:

XС = XС1 + XС2 + …

Если соединение объектов параллельное, то:

1/XC = 1/XC1 + 1/XC2+…

Закон Ома для этого случая записывается следующим образом:

XC = UC/I,

где UС – падение напряжения на конденсаторе.

Расчёт цепи

Эквивалентное сопротивление

При последовательном соединении I = const в любой точке и, согласно закону Ома, его можно рассчитать по формуле:

I = U/R,

где Z – электрический импеданс.

Последовательное соединение элементов

Напряжение на устройствах рассчитывается следующим образом:

UR = I · R, UL = I · XL, UC = I · XC.

Вектор индуктивной составляющей напряжения направлен в противоположную сторону от вектора емкостной составляющей, поэтому:

UX = UL – UC,

следовательно, согласно расчётам:

X = XL – XC.

Внимание! Для вычисления значения импеданса можно воспользоваться «треугольником сопротивлений», в котором гипотенузой является значение Z, а катетами – значения X и R.

Треугольник сопротивлений

Если в цепь подключены и конденсатор, и катушка индуктивности, то, согласно теореме Пифагора, гипотенуза (Z) будет равна:

Так как X = XL XC, то:

При решении электротехнических задач часто импеданс записывают в виде комплексного числа, в котором действительная часть соответствует значению активной составляющей, а мнимая – реактивной. Таким образом, выражение для импеданса в общем виде имеет вид:

Z = R + X·i,

где i – мнимая единица.

Для онлайн расчёта реактивного сопротивления можно использовать программу – калькулятор, которую можно найти в сети Интернет. Подобных сервисов достаточно много, поэтому вам не составит труда подобрать удобный для вас калькулятор.

Онлайн калькулятор для расчёта емкостных и индуктивных характеристик

Благодаря таким Интернет сервисам, можно быстро выполнить нужный расчёт.

Видео

Более подробно разберемся в каких единицах измеряется мощность. Как она зависит от напряжения источника питания и сопротивления нагрузки.

Ватт — единица измерения мощности (как потребляемой так и вырабатваемой). Один Ватт мощности выделяется в виде тепла при прохождении силы тока в один Ампер через резистор (сопротивление) 1 Ом. Закон Ома даст вам более широкое понятие о взаимозависимости мощности, силы тока, напряжение (Вольтажа) и сопротивления.

— Этот калькулятор как рассеиваемая мощность зависит от величины напряжения подаваемого на резистор, а так же от величины сопротивления самого резистора. — Вы можете вручную задать величины сопротивления и напряжения для расчета мощности — Обратите внимание как УВЕИЛЧИВАЕТСЯ мощность при  увеличении напряжении или уменьшении сопротивления. В то же время мощность УМЕНЬШАЕТСЯ (падает) при уменьшении напряжения и увеличении сопротивления резистора. Для справки: В технической документации (спецификации) аудио оборудования часто указывают пиковую мощность (peak watts)  или мощность RMS  (RMS watts).  Разницу между данными техническими параметрами мы рассмотрим чуть позже на нашем сайте.

—> Поделиться: —> Ohm — Ом единица измерения сопротивления. Основные понятия электроники Калькулятор зависимости силы тока от напряжения и сопротивления. Ом — теория зависимости силы тока и мощности от сопротивления. Что такое электрическая цепь. Понятия — обрыв цепи и короткое замыкание Электрическая мощность на примере усилителя и нагрузки в виде низкочастотных динамиков. Комментариев пока нет —> —> Последние статьи

Что такое ESR (ЭПС)?

Мы уже привыкли к основным параметрам конденсатора: ёмкости и рабочему напряжению. Но в последнее время не менее важным параметром стало его эквивалентное последовательное сопротивление (ЭПС). Что же это такое и на что оно влияет?

Так как ЭПС наиболее сильно влияет на работу алюминиевых электролитических конденсаторов, то в дальнейшем речь пойдёт именно о них. Сейчас мы разберём электролитический конденсатор по косточкам и узнаем, какие же тайны он скрывает.

Любой электронный компонент не идеален. Это относится и к конденсатору. Совокупность его свойств показывает условная схема.

Как видим, реальный конденсатор состоит из ёмкости C, которую мы привыкли видеть на схемах в виде двух вертикальных полос. Далее резистор Rs, который символизирует активное сопротивление проволочных выводов, электролита и контактного сопротивления вывод – обкладка. На фото видно, как проволочные выводы крепятся к обкладкам методом заклёпочного соединения.

Так как любой, даже очень хороший диэлектрик имеет определённое сопротивление (до сотен мегаом), то параллельно обкладкам изображается резистор Rp. Именно через этот «виртуальный» резистор течёт так называемый ток утечки. Естественно, никаких резисторов внутри конденсатора нет. Это лишь для наглядности и удобного представления.

Из-за того, что обкладки у электролитического конденсатора скручиваются и устанавливаются в алюминиевый корпус, образуется индуктивность L.

Свои свойства эта индуктивность проявляет лишь на частотах выше резонансной частоты конденсатора. Приблизительное значение этой индуктивности – десятки наногенри.

Итак, из всего этого выделим то, что входит в ЭПС электролитического конденсатора:

  • Сопротивление электролита. Вносит основную долю в величину ЭПС. Увеличивается из-за испарения растворителя и изменения химического состава электролита вследствие взаимодействия его с металлическими обкладками. Идеальная формула электролита пока не найдена, поэтому до сих пор аппаратуру выкашивает «конденсаторная чума» (англ. «Capacitor plague»);

  • Сопротивление, которое вызвано потерями в диэлектрике из-за его неоднородности, примесей и наличия влаги;

  • Омическое сопротивление проволочных выводов и обкладок. Активное сопротивление проводов;

  • Контактное сопротивление между обкладками и выводами.

Все эти факторы суммируются и образуют сопротивление конденсатора, которое и назвали эквивалентным последовательным сопротивлением – сокращённо ЭПС, а на зарубежный манер ESR (Equivalent Serial Resistance).

Как известно, электролитический конденсатор в силу своего устройства может работать только в цепях постоянного и пульсирующего тока из-за своей полярности. Собственно, его и применяют в блоках питания для фильтрации пульсаций после выпрямителя. Запомним эту особенность конденсатора – пропускать импульсы тока.

А если ESR – это, по сути, сопротивление, то на нём при протекании импульсов тока будет выделятся тепло. Вспомните о мощности резистора. Таким образом, чем больше ЭПС – тем сильнее будет греться конденсатор.

Нагрев электролитического конденсатора – это очень плохо. Из-за нагрева электролит начинает закипать и испаряться, конденсатор вздувается. Наверное, уже замечали на электролитических конденсаторах защитную насечку на верхней части корпуса.

При длительной работе конденсатора и повышенной температуре внутри его электролит начинает испаряться, и давить на эту насечку. Со временем давление внутри возрастает настолько, что насечка разрывается, высвобождая газ наружу.

«Хлопнувший» конденсатор на плате блока питания (причина — превышение допустимого напряжения)

Защитная насечка также предотвращает (или ослабляет) взрыв конденсатора при превышении на его обкладках допустимого рабочего напряжения или при переполюсовке – подаче на него напряжения обратной полярности.

На практике бывает и наоборот – давление выталкивает изолятор со стороны выводов. Далее на фото показан конденсатор, который высох. Ёмкость его снизилась до 106 мкФ, а ESR при измерении составило 2,8Ω, тогда как нормальное значение ESR для нового конденсатора с такой же ёмкостью лежит в пределах 0,08 – 0,1Ω.

Электролитические конденсаторы выпускают на разную рабочую температуру. У алюминиевых электролитических конденсаторов нижняя граница температуры начинается с — 60°С, а верхняя ограничена +155°С. Но в большинстве своём такие конденсаторы рассчитаны на работу в температурном диапазоне от -25°С до 85°С и от -25°С до 105°С. На этикетке иногда указывается только верхний температурный предел: +85°С или +105°С.

Наличие ЭПС в реальном электролитическом конденсаторе влияет на его работу в высокочастотных схемах. И если для обычных конденсаторов это влияние не столь выражено, то вот для электролитических конденсаторов оно играет весьма важную роль. Особенно это касается их работы в цепях с высоким уровнем пульсаций, когда протекает существенный ток, и за счёт ESR выделяется тепло.

Взгляните на фото.

Вздувшиеся электролитические конденсаторы (причина — длительная работа при повышенной температуре)

Это материнская плата персонального компьютера, который перестал включаться. Как видим, на печатной плате рядом с радиатором процессора расположено четыре вздувшихся электролитических конденсатора. Длительная работа при повышенной температуре (внешний нагрев от радиатора) и приличный срок эксплуатации привёл к тому, что конденсаторы «хлопнули». Виной тому – нагрев и ESR. Плохое охлаждение отрицательно сказывается не только на работе процессоров и микросхем, но, как оказывается, и на электролитических конденсаторах!

Снижение температуры окружающей среды на 10°C продлевает срок службы электролитического конденсатора почти вдвое.

Аналогичная картина наблюдается в отказавших блоках питания ПК – электролитические конденсаторы также вздуваются, что приводит к просадке и пульсациям напряжения питания.

Неисправные конденсаторы в БП ПК ATX (причина — низкое качество конденсаторов)

Нередко из-за длительной работы импульсные блоки питания точек доступа, роутеров Wi-Fi, всевозможных модемов также выходят из строя по причине «хлопнувших» или потерявших ёмкость конденсаторов. Не будем забывать, что при нагреве электролит высыхает, а это приводит к снижению ёмкости. Пример из практики я описывал здесь.

Из всего сказанного следует, что электролитические конденсаторы, работающие в высокочастотных импульсных схемах (блоки питания, инверторы, преобразователи, импульсные стабилизаторы) работают в довольно экстремальных условиях и выходят из строя чаще. Зная это производители выпускают специальные серии конденсаторов с низким ESR и низким импедансом. На таких конденсаторах, как правило, присутствует надпись Low ESR или Low Impedance (Low Imp). Что, соответственно, означает, – низкое ЭПС, низкий импеданс. Также существуют серии с ультранизким ЭПС и ультранизким импедансом (Ultra Low ESR, Ultra Low Impedance).

Известно, что конденсатор обладает ёмкостным или реактивным сопротивлением, которое снижается с ростом частоты переменного тока.

Таким образом, с ростом частоты переменного тока, реактивное сопротивление конденсатора будет падать, но только до тех пор, пока оно не приблизится к величине эквивалентного последовательного сопротивления (ESR). Его то и необходимо измерить. Поэтому многие приборы – измерители ESR (ESR-метры) измеряют ЭПС на частотах в несколько десятков – сотен килогерц. Это необходимо для того, чтобы «убрать» величину реактивного сопротивления из результатов измерения.

Стоит отметить, что на величину ESR конденсатора влияет не только частота пульсаций тока, но и напряжение на обкладках, температура окружающей среды, качество изготовления. Поэтому однозначно сказать, что ESR конденсатора, например, равно 3 омам, нельзя. На разной рабочей частоте величина ESR будет разной.

ESR-метр

При проверке конденсаторов, особенно электролитических, стоит обращать внимание на величину ESR. Для тестирования конденсаторов и измерения ESR существует немало серийно выпускаемых приборов. На фото универсальный тестер радиокомпонентов (LCR-T4 Tester) функционал которого поддерживает замер ESR конденсаторов.

В радиотехнических журналах можно встретить описания самодельных приборов и приставок к мультиметрам для измерения ESR. В продаже можно найти и узкоспециализированные ESR-метры, которые способны измерять ёмкость и ЭПС без выпайки конденсаторов из платы, а также разряжать их перед этим с целью защиты прибора от повреждения высоким остаточным напряжением. К таким приборам относятся, например, такие как ESR-micro v3.1, ESR-micro V4.0s, ESR-micro v4.0SI.

При ремонте электроники приходится часто менять электролитические конденсаторы. При этом для оценки их качества измеряются такие параметры, как ёмкость и ESR. Чтобы было с чем сравнивать, была составлена таблица ESR, в которой указано ЭПС новых электролитических конденсаторов разных ёмкостей. Данную таблицу можно использовать для оценки пригодности того или иного конденсатора для дальнейшей службы. Но, с одной оговоркой…

Не стоит забывать о том, что «эталонные» данные по величине ESR приводятся в даташитах на конкретную серию конденсаторов. Так что, иногда лучше свериться с информацией, полученной «из первых рук». Здесь лишь следует учесть то, что производители для замера ESR могут использовать иное оборудование, чем вы, и, поэтому, итоговые показания всё равно будут отличаться, пусть, и незначительно.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Свойства электролитических конденсаторов.

  • Правильное соединение конденсаторов.

  • Как узнать ёмкость конденсатора по его маркировке?

Пост обновлен 7 июля 2020 г.

Отбросьте в сторону все ваши умные книги — мы займемся практикой.

Вы когда-либо пробовали разобраться, что такое полное электрическое сопротивление, которое еще называют импедансом? Если раньше вы уже успели окунуться в эту тему, то скорее всего, уже нахватались жаргонных словечек, таких как «фазовый вектор», «соотношения фаз» и даже «реактивное сопротивление». Какого черта, что все это значит?

Не все из нас по образованию инженеры-электрики. Некоторые в свободное время просто возятся с электроникой, но никогда не касаются строгих математических обоснований, которые вы изучали в университете. Однако это не означает, что отсутствие понимания, что такое полное электрическое сопротивление должно стать препятствием. Если вы планируете работать с электронными устройствами переменного тока, то вам нужно знать, что такое полное сопротивление, и как оно влияет на вашу электрическую цепь.

Давайте выясним это!

Не совсем яблочко от яблоньки

Лучший способ понять, что же такое полное электрическое сопротивление – это сравнить его с чем-то уже вам известным, скажем – «простым» сопротивлением. Так мы сможем дать исчерпывающее определение полного электрического сопротивления одной фразой:

Полное электрическое сопротивление – это вид сопротивления, зависящее от частоты.

Вот и всё. Сейчас вы можете остановиться и записать еще одно слово в ваш словарь инженера-электрика. Просто и понятно: полное электрическое сопротивление – вид сопротивления, которое зависит от рабочей частоты электрической цепи. Но, разумеется, это еще не всё.

Резисторы выполняют в цепи постоянного тока чрезвычайно простую работу. Они оказывают сопротивление току, протекающему через какой-либо металл, например медь. Вы добавляете резистор на 220 кОм в цепь постоянного тока, и получаете определенное уменьшение тока, который втекает в резистор с одной стороны, и вытекает из него с другой стороны. Резисторы, подобно другим чисто омическим компонентам электрической цепи, не думают о том, какую же частоту выдает источник тока. Они просто делают то, что должны делать – оказывают некое постоянное сопротивление току.

Но что произойдет, если вы начнете работать с электроникой с питанием от источника переменного тока? Источник переменного тока не просто дает 5 В для питания вашей схемы. Кроме нового источника тока вы получили новые переменные, с которыми необходимо считаться. Например, сюда входит заранее известная частота переменного тока в сети питания. В Соединенных Штатах Америки частота тока в электрической сети составляет 60 колебаний в секунду (60 Гц). За океаном, в Европе, частота тока в сети 50 Гц.

В отличие от постоянного тока (DC), график которого представляет собой

прямую линию, переменный ток (АС) колеблется с определенной частотой.

Полное сопротивление = активное сопротивление + реактивное сопротивление

Но что такое реактивное сопротивление?

Реактивное сопротивление бывает двух видов в зависимости от используемого реактивного компонента. Сюда входит:

Индуктивное реактивное сопротивление

Оно встречается в цепях, где есть своего рода электромагниты, влияющие на магнитное поле электрической цепи. Еще их называют катушками индуктивности. Катушки индуктивности имеют низкое полное электрическое сопротивление на низких частотах и высокое полное электрическое сопротивление на высоких частотах.

Разные катушки индуктивности. Обратите внимание на общность

конструкции – медный провод намотан на магнит, образуя катушку.

Емкостное реактивное сопротивление

Оно встречается там, где электрическое поле между двумя проводящими поверхностями вызывает накопление заряда. Такие устройства еще называют конденсаторами. Конденсаторы имеют высокое полное электрическое сопротивления на низких частотах и низкое полное сопротивление на высоких частотах.

Конденсаторы встречаются всех форм и размеров.

Соберем электрическую цепь переменного тока из резисторов, катушек индуктивности и конденсаторов. Теперь вы сможете не только оказывать сопротивление электрическому току, но и накапливать и высвобождать энергию. Если резисторы сохраняют постоянное сопротивление вне зависимости от изменяющихся условий, то сопротивление катушек индуктивности и конденсаторов изменяется в зависимости от частоты проходящего через них электрического сигнала. Когда конденсаторы и катушки индуктивности вместе оказывают сопротивление и накапливают/высвобождают энергию, тогда и говорят о полном электрическом сопротивлении.

Как измерить полное электрическое сопротивление

Соединим все детали вместе в простую электрическую цепь. Взглянем на рисунок ниже: это цепь с источником питания постоянного тока. Ток течет через резистор. Весьма просто, верно? Чем больше сопротивление резистора в цепи, тем меньше будет ток.

Простая цепь постоянного тока с резистором

на 100 Ом для ограничения силы тока.

Что произойдет, если мы добавим в электрическую цепь источник питания переменного тока, катушку индуктивности и конденсатор? Теперь в цепи есть два дополнительных компонента, каждый из которых по своему оказывает сопротивление электрическому току. Как и резистор, они оба препятствуют прохождению электрического тока, при этом также воздействуют на ток. Если суммировать активное сопротивление резистора и активное и реактивное сопротивления конденсатора и катушки индуктивности, то получится полное электрическое сопротивление или импеданс.

В цепи переменного тока последовательно соединены резистор, катушка индуктивности и конденсатор

Постойте! Чтобы рассчитать полное электрическое сопротивления недостаточно просто сложить активные и реактивные сопротивления. Обычно в большинстве учебных пособий с этого момента начинается изобилие математических формул, поэтому дальше читайте не спеша.

Расчет полного электрического сопротивления конденсатора

Чтобы найти полное электрическое сопротивление конденсатора, вы можете воспользоваться следующей формулой. В ней Xc – полное электрическое сопротивление, которое необходимо найти. Оно измеряется в Омах. Переменная f – это частота сигнала, проходящего через конденсатор, а C – емкость конденсатора.

Расчет полного электрического сопротивления катушки индуктивности

Чтобы найти полное электрическое сопротивление катушки индуктивности, вы можете воспользоваться следующей формулой. В ней XL – полное электрическое сопротивление, которое необходимо найти. Оно измеряется, опять же, в Омах. Переменная f – это частота сигнала, проходящего через катушку индуктивности, а L – индуктивность.

Эти формулы правильны и прекрасны, если вы хотите рассчитать полное электрическое соединение отдельных компонентов электрической цепи, но что же делать, если нужно найти полное сопротивление всей цепи? Теперь все еще более усложняется.

Перед тем, как мы перейдем к нашей последней формуле, мы хотим предложить вашему вниманию калькулятор полного электрического сопротивления, который может упростить вам жизнь: Калькуляторы полного сопротивления от Keisan.

Расчет полного электрического сопротивления цепи

Чтобы выполнить расчет, вам необходимо обратиться за помощью к теореме Пифагора. Как мы уже рассказали выше, в цепях переменного тока действуют и активное, и реактивное сопротивления, вместе образуя полное электрическое сопротивление. Но простое суммирование активного и реактивного сопротивления не имеет смысла. Мы можем объяснить, почему это так, но тогда нам придется рассказать о премудростях фазовых векторов и о правилах работы с ними, а для этого понадобится отдельный блог.

Когда вы сталкиваетесь с расчетом полного электрического сопротивления всей цепи, вам может помочь то, что называется треугольником сопротивлений, который показан на рисунке ниже.

Треугольник сопротивлений упрощает расчет

полного электрического сопротивления цепи.

Наиболее важная часть этого треугольника – его гипотенуза, дает величину полного сопротивления цепи, которое представляет собой квадратный корень из суммы квадратов активного и реактивного сопротивлений. Если вы подставите их в данную формулу, то сможете найти полное сопротивление электрической цепи. В ней Z – это искомое полное электрическое сопротивление цепи, R – полное активное сопротивление, X – полное реактивное сопротивление.

Практическое применение полного электрического сопротивления

Становится понятно, в конце концов, что после всех наших объяснений разобраться, что такое полное электрическое сопротивление, несложно, не так ли? Существуют десятки бесплатных калькуляторов, которые помогут вам выполнить расчеты. Что вам на самом деле нужно – это знать, что полное сопротивление работает так же, как активное сопротивление, ограничивая ток в цепи переменного тока.

Способность таких компонентов, как конденсаторы и катушки индуктивности реагировать на постоянные изменения переменного тока, делает их уникальными. Благодаря полному сопротивлению в вашей цепи можно организовать нечто похожее на электрический щит с защитными автоматами, которые реагируют на неожиданные скачки электричества, защищая от выгорания домашнюю электропроводку. Можно также сказать спасибо полному сопротивлению за то, что вы можете носить с собой ноутбук с полностью заряженным аккумулятором, не опасаясь его взрыва.

Когда дело доходит до работы с устройствами с питанием от источника переменного тока, будь то ноутбук или электрощит в вашем доме, стоит быть благодарным полному электрическому сопротивлению. И помните, полное электрическое сопротивление – это просто старший брат привычного активного сопротивления, который объединяет активное и реактивное сопротивления в одной простой формуле.

Просмотров: 0Комментариев: 0 image

Господа, сегодняшнюю статью можно считать в некотором роде продолжением предыдущей. Сначала я даже хотел поместить весь этот материал в одну статью. Но его получилось довольно много, на горизонте были новые проекты, и я в итоге разделил его на две. Итак, сегодня мы поговорим про сопротивление конденсатора переменному току. Мы получим выражение, по которому можно будет рассчитать, чему равно сопротивление любого конденсатора, включенного в цепь с переменным током, а в конце статьи рассмотрим несколько примеров такого расчета.

Сразу оговорюсь про одну важную вещь. Вообще говоря, реальный конденсатор обладает помимо емкостного сопротивления еще резистивным и индуктивным. На практике все это надо обязательно учитывать, потому что возможны ситуации (обычно связанные с ростом частоты сигнала), когда конденсатор перестает быть конденсатором и превращается… в некое подобие катушки индуктивности . При проектировании схем этот момент обязательно надо иметь в виду. Согласитесь, господа, крайне неприятно поставить в схему конденсатор и потом столкнуться с тем, что из-за высокой частоты он ведет себя и не как конденсатор вовсе, а как самый настоящий дроссель. Это, безусловно, очень важная тема, но сегодня речь пойдет не о ней. В сегодняшней статье мы будем говорить непосредственно про емкостное сопротивление конденсатора. То есть мы будем считать его идеальным, без каких бы то ни было паразитных параметров вроде индуктивности или активного сопротивления.

Давайте представим, что у нас есть конденсатор, который включен в цепь с переменным током. В цепи больше нет никаких компонентов, только один конденсатор и все (рисунок 1).

image

Рисунок 1 – Конденсатор в цепи переменного тока

К его обкладкам приложено некоторое переменное напряжение U(t), и через него течет некоторый ток I(t). Зная одно, можно без проблем найти другое. Для этого надо всего лишь вспомнить прошлую статью про конденсатор в цепи переменного тока, там мы про все это довольно подробно говорили. Будем полагать, что ток через конденсатор изменяется по синусоидальному закону вот так

image

В прошлой статье мы пришли к выводу, что если ток изменятся вот по такому закону, то напряжение на конденсаторе должно меняться следующим образом

image

Пока что ничего нового мы не записали, это все дословное повторение выкладок из предыдущей статьи. А сейчас самое время их немного преобразовать, придать им чуть другой облик. Если говорить конкретно, то нужно перейти к комплексному представлению сигналов! Помните, на эту тему была отдельная статья? В ней я говорил, что она нужна для понимания некоторых моментов в дальнейших статьях. Вот как раз и наступил тот момент, когда пора вспомнить все эти хитрые мнимые единицы. Если говорить конкретно, то сейчас нам потребуется показательная запись комплексного числа. Как мы помним из статьи про комплексные числа в электротехнике, если у нас есть синусоидальный сигнал вида

image

то его можно представить в показательной форме вот так

image

Почему это так, откуда взялось, что здесь какая буковка значит – обо всем уже подробно говорили. Для повторения можно перейти по ссылке и еще раз со всем ознакомиться.

Давайте-ка теперь применим это комплексное представление для нашей формулы напряжения на конденсаторе. Получим что-то типа такого

image

Теперь, господа, я хотел бы вам рассказать еще про один интересный момент, который, наверное, следовало бы описать в статье про комплексные числа в электротехнике. Однако тогда я про него как-то позабыл, поэтому давайте рассмотрим его сейчас. Давайте представим, что t=0. Это приведет к исключению из расчетов времени и и частоты, и мы переходим к так называемым комплексным амплитудам сигнала. Безусловно, это не значит, что сигнал из переменного становится постоянным. Нет, он все так же продолжает изменяться по синусу с той же самой частотой. Но бывают моменты, когда частота нам не очень важна, и тогда лучше от нее избавиться и работать только с амплитудой сигнала. Сейчас как раз такой момент. Поэтому полагаем t=0 и получаем комплексную амплитуду напряжения

image

Что мы вообще такое записали? Правильно, комплексную амплитуду тока через конденсатор. Теперь выражение для комплексной амплитуды напряжения принимает вид

Результат, к которому мы стремимся, уже близок, но остается еще один не очень приятный множитель с экспонентой. Как с ним быть? А, оказывается, очень просто. И снова нам на помощь придет статья по комплексным числам в электротехнике, не зря ж я ее писал . Давайте преобразуем этот множитель, воспользовавшись формулой Эйлера:

Да, вся эта хитрая экспонента с комплексными числами в показателе превращается всего лишь в мнимую единичку, перед которой стоит знак минус. Согласен, возможно, осознать это не так просто, но тем не менее математика говорит, что это так. Поэтому результирующая формула у нас принимает вид

Давайте выразим из этой формулы ток и приведем выражение к виду, соответствующему закону Ома. Получим

Как мы помним из статьи про закон Ома, у нас ток равнялся напряжению, деленному на сопротивление. Так вот, здесь практически то же самое! Ну, за исключением того, что у нас ток и напряжение – переменные и представлены через комплексные амплитуды. Кроме того, не забываем, что ток течет у нас через конденсатор. Поэтому, выражение, которое стоит в знаменателе, можно рассматривать как емкостное сопротивление конденсатора переменному току:

Да, выражение для сопротивления конденсатора имеет вот такой вот вид. Оно, как вы можете заметить, комплексное. Об этом свидетельствует буковка j в знаменателе дроби. А что значит эта комплексность? На что она влияет и что показывает? А показывает она, господа, исключительно сдвиг фаз в 90 градусов между током и напряжением на конденсаторе. А именно, ток на 90 градусов опережает напряжение. Этот вывод не является для нас новостью, про все это было подробно рассказано в прошлой статье. Чтобы это лучше осознать, надо теперь мысленно пройтись от полученной формулы вверх к тому моменту, где у нас это j возникло. В процессе подъема вы увидите, что мнимая единица j возникло из формулы Эйлера из-за того, что там был компонент . Формула Эйлера у нас возникла из комплексного представления синусоиды. А в исходной синусоиде как раз был заложен сдвиг фазы в 90 градусов тока относительно напряжения. Как-то так. Вроде все логично и ничего лишнего не возникло.

Теперь может возникнуть два совершенно логичных вопроса: как работать с таким представлением и в чем его выгода? Да и вообще, пока лишь какие-то дико абстрактные буковки и нифига не ясно, как взять и оценить сопротивление какого-нибудь конкретно конденсатора, который мы купили в магазине и воткнули в схему. Давайте разбираться постепенно.

Как мы уже говорили, буковка j в знаменателе говорит нам лишь о сдвиге фаз тока и напряжения. Но она не влияет на амплитуды тока и напряжения. Соответственно, если сдвиг фаз нас не интересует, то можно исключить эту буковку из рассмотрения и получить более простое выражение абсолютно без всяких комплексностей:

Согласитесь, жить стало чуточку легче. Это выражение позволяет рассчитать сопротивление конденсатора для конкретной емкость и частоты сигнала. Заметьте, господа, интересный факт. Сопротивление конденсатора, оказывается, зависит не только от самого конденсатора (а именно его емкости), но и от частоты протекающего тока. Если вспомнить обычные резисторы, то в них у нас сопротивление зависело только от самого резистора, материала, формы и всего такого прочего, но не зависело от частоты (разумеется, мы говорим сейчас про идеальные резисторы, без всяких паразитных параметров). Здесь все по-другому. Один и тот же конденсатор на разной частоте будет иметь разное сопротивление и через него будет течь ток разной амплитуды при одной и той же амплитуде напряжения.

Что еще мы можем сказать, глядя на эту формулу? Например, то, что чем больше частота сигнала, тем меньше для него сопротивление конденсатора. И чем больше емкость конденсатора, тем меньше его сопротивление переменному току.

По аналогии с резисторами, сопротивление конденсаторов измеряется все так же в Омах. Однако всегда следует помнить, что это немного другое сопротивление, его называют реактивным. И другое оно в первую очередь из-за того самого пресловутого j в знаменателе, то есть из-за сдвига фазы. У «обычных» (которые называют активными) Омов такого сдвига нет, там напряжение четко совпадает по фазе с током. Давайте построим график зависимости сопротивления конденсатора от частоты. Для определенности емкость конденсатора возьмем фиксированной, скажем, 1 мкФ. График представлен на рисунке 2.

Рисунок 2 (кликабельно) – Зависимость сопротивления конденсатора от частоты

На рисунке 2 мы видим, что сопротивление конденсатора переменному току убывает по закону гиперболы.

При стремлении частоты к нулю (то есть фактически при стремлении переменного току к постоянному) сопротивление конденсатора стремится к бесконечности. Это и логично: мы все помним, что для постоянного тока конденсатор фактически представляет собой разрыв цепи. На практике оно, конечно, не бесконечно, а ограничено сопротивлением утечки конденсатора. Тем не менее, оно все равно очень велико и часто его и считают бесконечно большим.

При стремлении частоты к бесконечности, сопротивление конденсатора стремится к нулю. Это все в теории, конечно. На практике реальный конденсатор обладает рядом паразитных параметров (в частности, паразитная индуктивности и сопротивление утечки), из-за чего сопротивление уменьшается только лишь до некоторой определенной частоты, а потом начинает наоборот расти. Но об этом более подробно в другой раз.

Есть еще один вопрос, который хотелось бы обговорить, прежде чем начинать рассмотрение примеров. Зачем вообще писать букву j в знаменателе сопротивления? Не достаточно ли просто всегда помнить про сдвиг фаз, а в записи использовать числа без этой мнимой единицы? Оказывается, нет. Представим себе цепь, где одновременно присутствуют резистор и конденсатор. Скажем, они соединены последовательно. И вот тут-то как раз мнимая единичка рядом с емкостью не позволит просто так взять и сложить активное и реактивное сопротивление в одно действительное число. Общее сопротивление такой цепочки будет комплексным, причем состоящим как из действительной части, так и из мнимой. Действительная часть будет обусловлена резистором (активными сопротивлением), а мнимая – емкостью (реактивным сопротивлением). Впрочем, это все тема для другой статьи, сейчас не будем в это углубляться. Давайте лучше перейдем к примерам.

Пусть у нас есть конденсатор емкостью, скажем C=1 мкФ. Требуется определить его сопротивление на частоте f1=50 Гц и на частоте f2=1 кГц. Кроме того, следует определить амплитуду тока с учетом того, что амплитуда приложенного к конденсатору напряжения равна Um=50 В. Ну и построить графики напряжения и тока.

Собственно, задачка эта элементарная. Подставляем циферки в формулу для сопротивления и получаем для частоты f1=50 Гц сопротивление, равное

А для частоты f2=1 кГц сопротивление будет

По закону Ома находим величину амплитуды тока для частоты f1=50 Гц

Аналогично для второй частоты f2=1 кГц

Теперь мы легко можем записать законы изменения тока и напряжения, а также построить графики для этих двух случаев. Полагаем, что напряжение у нас изменяется по закону синуса для первой частоты f1=50 Гц следующим образом

А для второй частоты f2=1 кГц вот так

Дальше мы помним, что ток в конденсаторе опережает напряжение на . Поэтому с учетом этого можем записать закон изменения тока через конденсаторы для первой частоты f1=50 Гц

и для частоты f2=1 кГц

Графики тока и напряжения для частоты f1=50 Гц представлены на рисунке 3

Рисунок 3 (кликабельно) – Напряжение на конденсаторе и ток через конденсаторе, f1=50 Гц

Графики тока и напряжения для частоты f2=1 кГц представлены на рисунке 4

Рисунок 4 (кликабельно) – Напряжение на конденсаторе и ток через конденсаторе, f2=1 кГц

Итак, господа, мы сегодня познакомились с таким понятием, как сопротивление конденсатора переменному току, научились его считать и закрепили полученные знания парочкой примеров. На сегодня все. Спасибо что прочитали, всем огромной удачи и пока!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

Social button for Joomla

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий