Эксплуатация трансформаторов напряжения в сетях с изолированной нейтралью

Доброго времени суток, всем. Продолжаем разговаривать о электроснабжении частных участков. Сегодня на повестке дня — системы заземления.

Немного теории:

Преднамеренное электрическое соединение какой-либо точки электрической сети, электроустановки или оборудования с заземляющим устройством называют искусственным заземлением. Все что мы рассматриваем, будет «искусственным» заземлением. Выделяют две принципиально различные системы заземления по состоянию нейтрали источника питания относительно земли: Т(Terra) — заземлённая нейтраль и I(Isolated) — изолированная нейтраль.

Изначально,В  в системе международных обозначений использовались первые буквы французских слов (terre, neutre, sГ©parГ©),В  но я буду приводить уже более привычные международные расшифровки на английском языке.

Все существующие типы заземления нормируются международным стандартом IEC 60364 иВ  ГОСТ Р 50571.2-94В«Электроустановки зданий. Часть 3. Основные характеристикиВ».В  Выделяют следующие системы заземления:В  IT, TT и TN, существующуюВ  в виде трех подтиповВ  TN-C, TN-S, TN-C-S. В таком порядке мы и будем их обозревать.

image

IT (Isolated-Terra)

Самый редкий и загадочный для обывателя тип заземления. В этой системе нейтраль источника питания изолирована от земли или заземлена через большое сопротивление, а открытые проводящие части заземлены. Что это значит для нас? А то, что ноля в этой системе нету, совсем нету 🙂 Все потребители будут включаться в линейное напряжение (напряжение между фазами), в обычной сети 230/400В оно будет равняться 400В. И для подключения приборов рассчитанных на 230 мы должны иметь сеть с напряжением 110-127В на фазе, например, как в США или использовать специальный трехфазный понижающий трансформатор 400/230 В. Также трансформатор может обеспечить искусственную нейтраль на вторичной обмотке, для подключения чувствительной к линейному напряжению автоматики.

Мало кто знает, но сети на 110В с подобной архитектурой и системой заземления активно эксплуатировались в России еще с царских времен. Позднее, в 1930-х годах, напряжение было поднято до 127В, и в таком виде они просуществовали до середины 70-х годов. Именно этим и обусловлено наличие в щитах старого фонда двух «пробок» (плавких предохранителей). Они защищали две фазы по 127В, а в розетке у потребителя были привычные всем 220В, но линейные, а не фазные (напряжение между фазой и нейтралью).

При всей своей сложности и архаичности, IT система обладает высокой безопасность, отказоустойчивостью (из-за отсутствия токов короткого замыкания) и помехозащищенностью. В настоящее время она используется на судах и добывающих платформах, лабораториях, реанимационных отделениях и других местах, где крайне важна непрерывность электроснабжения или имеются проблемы с организацией надежной точки заземления, например у горных условиях. Простейшим бытовым примером подобной системы будет являться переносной генератор.

image

TT (Terra-Terra)

В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически независимый от заземлителя нейтрали трансформаторной подстанции.

Основной и главное проблемой при использовании системы TT, является организация надежной точки заземления на стороне потребителя. Поэтому питание по схеме ТТ разрешено только при невозможности использования схемы TN, и требует обязательного применения УЗО для обеспечения условий электробезопасности.

ПУЭ 1.7.59 Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО.

Что это значит на практике? Систему ТТ стоит применять только в случае ненадежности воздушной линии. Если у вас удаленная, ветхая линия на деревянных опорах или проложена через участки, где возможно ее повреждение (например, через густой лес), то стоит рассмотреть использование TT системы. Во всех остальных случаях использование системы ТТ, нерационально даже для сельской местности, т.к. требует организации молниезащиты и постоянного контроля качества местного заземления.

В городской местности TT используется для удаленных от ТП точек временной торговли и оказания услуг, например при организации праздников.

TN (Terra-Neutral)

Система имеющая глухозаземленную у ТП нейтраль, а открытые проводящие части электроустановки присоединяются к этой точке посредством нулевых защитных проводников. Cовмещенный нулевой защитный и нулевой рабочий проводник принято называть PEN (Protective Earth and Neutral). Не существует в чистом виде и разделяется на 3 подтипа в зависимости от места разделения PEN проводника на защитный (PE-Protective Earth) и рабочий (N-Neutral).

TN-C (Terra-Neutral-Combined)

Система TN-CВ  существуетВ  с 1913 года. В этой схеме в одном проводе совмещены два проводника — нулевой (N) и заземление (РЕ). Это и является основным недостатком схемы заземления TN-C из-за возможности появления линейного напряжения на корпусах электроустановок при аварийном обрыве нуля. Несмотря на небезопасность, данная система всё ещё встречается. Она использовалась в жилых зданиях времён Советского Союза, и является, по своей сути,В  «занулением». Но в Советском Союзе корпуса бытовых электроприборов не заземлялись, поэтому такая система была достаточно безопасной. Сейчас большинство устройств требуют защитного заземления и небезопасны при использовании в устаревших сетях TN-C.

Если вы являетесь «счастливым» обладателем жилья в старом фонде, и меняете проводкуВ  — обязательно прокладывайте трехжильный кабель.В  Если сечение стояковВ  соответствует 10мм2 по меди или 16мм2 по алюминию, то вам повезло и вы имеете возможность перейти на актуальную систему ТN-C-S, разделив PENВ  в этажном щите. ПУЭ 1.7.131.В многофазных цепях в системе TN для стационарно проложенных кабелей, жилы которых имеют площадь поперечного сечения не менее 10 мм2 по меди или 16 мм2 по алюминию, функции нулевого защитного (РЕ) и нулевого рабочего (N) проводников могут быть совмещены в одном проводнике (PEN-проводник).

В противном случае проводники PE подключать никуда не стоит, они будут подключены обслуживающей организацией после реконструкции сетей.

На сегодняшний день, система TN-C перестала соответствовать требованиям безопасности, и запрещена для жилищного строительства. Из современных электроустановок, такая система встречается только в уличном освещении из соображений экономии.

TN-S (Terra-Neutral-Separated)

Система TN-S основана на том, что нулевой рабочий проводник N и защитный проводник PE приходят к потребителю отдельными жилами отВ  питающей трансформаторной подстанции (ТП).В  Она была разработана на замену условно опасной системы TN-C в 1930-х годах. При обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Эта система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток.

На сегодняшний день является самой безопасной системой, но и самой дорогостоящей и трудозатратной в монтаже.

TN-C-S (Terra-Neutral-Combined-Separated)

Для удешевления оптимальной по безопасности, но крайне дорогой системы TN-S было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом — системаВ  TN-C-S. В этойВ  компромиссной системе,В  ТП имеет наглухо заземлённую нейтраль, а PEN проводник от подстанции разделяется на N и PE в определенном месте, например в ВРУ на вводе в жилой дом. Именно эта система пришла на смену опасной и устаревшей TN-C и стала мировым стандартом. В соответствии с ПУЭ является основной и рекомендуемой системой, в большинстве случаев.

Система обходится значительно дешевле TN-S, но имеет существенный недостаток — в случае повреждения провода PEN, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому ПУЭ требуют соблюдения ряда мер по недопущению разрушения PEN — механическую защиту PEN, а также наличие повторных заземлений PEN воздушной линии по столбам через какое-то расстояние (не более 200 метров для районов с числом грозовых часов в году до 40, 100 метров для районов с числом грозовых часов в году более 40).

Если вы видите наличие повторных заземление на опорахВ  ВЛ в вашей местности, то именно система TN-C-S будет оптимальным решением. Она позволяет ощутимо экономить наВ  устройстве молниезащиты (т.к. появление пика напряжения между PE и N невозможно), не требует столь высокого качества и постоянного контроля узла заземления, как TT система. Система TN-C-S обеспечивает высокую надежность и безопасность, т.к.В  на протяжении линии присутствует большое количество повторных заземлений, и снижение качества одногоВ  из них не сильно отражается на безопасности системы в целом.В  Хорошим решением будет установка повторного заземления в месте разделения PEN, в рамках ИЖС,В  для этого идеально подходит узел учета. Организацию точки повторного заземленияВ  рассмотрим уже в практической части, статья и так получилась очень объемной.

Надеюсь, был полезен:) Критика и обсуждение в комментариях, как всегда, приветствуется.

Моя VK группа inakipelo. Там же я выкладываюВ  советы и материалы, не дотягивающие до формата полноценной статьи

Эффективно-заземлённая нейтраль (трех-фазной электроустановки) — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4.

Термин «глухозаземлённая нейтраль» в сетях выше 1000В в данный момент не применяется. Электроустановки, в которых нейтраль соединяется с заземляющим устройством непосредственно, также относятся к электроустановкам с эффективно-заземлённой нейтралью.

Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания.

Иначе говоря при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза. Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше.

Содержание

Примечания

  1. ПУЭ — правила устройства электроустановок, издание 6-е и 7-е.
  2. ПТЭЭП — правила технической эксплуатации электроустановок потребителей.

Общее представление

Режимы нейтрали электроустановок выбираются из общепринятой, устоявшейся мировой практики. Некоторые изменения и корректировки вносятся из особенностей государственных энергосистем, что связывается с финансовыми возможностями объединений, протяженностью сети и другими параметрами.

Вам будет интересно:Светодиодные занавесы: обзор, производители, виды и отзывы

Чтобы определить нейтраль и режим ее работы, достаточно ориентироваться в наглядных схемах электроустановок. Необходимо особое внимание уделить силовым трансформаторами и их обмоткам. Последние могут выполняться звездой или треугольником. Подробнее — ниже.

Треугольник предполагает изолированность нулевой точки. Звезда — наличие заземлителя, который присоединяется к:

Читайте также:  Правила безопасной работы при работе с электрическим током

  • контуру заземления;
  • резистору;
  • дугогасящему реактору.

От чего зависит выбор нулевой точки соединения?

Выбор режима нейтрали зависит от ряда характеристик, среди которых можно выделить:

  • Надежность сети. Первый критерий связывается с выстраиванием защиты относительно однофазного замыкания на землю. Для работы сети 10-35 кВ зачастую применяется изолированная нейтраль, которая не отключает линию из-за упавшей ветки и даже провода на землю. А для сети 110 кВ и выше требуется моментальное отключение, для чего применяется эффективно заземленная.
  • Стоимость. Важный критерий, который определяет выбор. Реализовать изолированную сеть намного дешевле, что связывается с отсутствием необходимости в четвертом проводе, экономией средств на траверсы, изоляцию и на прочие нюансы.
  • Устоявшаяся практика. Как отмечалось выше, режимы нейтралей трансформаторов выбираются на основании общемировой и государственной статистики. Это говорит о том, что большинство производственных предприятий, создающих силовое оборудование, придерживаются этих норм. Из-за этого выбор предопределен заводом-изготовителем трансформатора или генератора.

Способы включения нейтрали

Специфика работы высоковольтных (ВВ) систем состоит в том, что в случае обрыва или повреждения линии, сопровождающегося замыканием отдельного провода на землю, токи утечки могут достигать очень больших величин.

Советуем изучить — Как оценивается опасность поражения человека током электроустановки в электросетях различной конфигурации

В соответствии с этим защитные меры, предпринимаемые в таких сетях, заметно отличаются от аналогичных действий в цепях конечного потребителя.

Для сетей 6-35 киловольт характерны перечисленные ниже режимы заземления нейтрали:

  • прямое соединение с ЗУ, обустроенным непосредственно у подстанции или у высоковольтной опоры (глухозаземленная нейтраль заземления);
  • подключение через специальный дугогасящий реактор или компенсатор;
  • использование для этих целей системы заземления, при которой нейтраль подключается через резистор;
  • без подключения к ЗУ в границах защищаемой линии или объекта (изолированная нейтраль).

Установка специальных компенсационных элементов в цепи включения нейтрального проводника способствует снижению емкостных составляющих токов замыкания.

В процессе работы такой цепочки эти токи удаётся нейтрализовать за счёт плавного изменения индуктивности катушки, напряжение в которой имеет обратную фазу.

https://youtube.com/watch?v=pkRcral1-qI

При определённом значении индуктивности ток в точке замыкания заземлителя на землю снижается до нулевого значения. Для повышения эффективности действия такого заземления параллельно индуктивности включается резистор, обеспечивающий условия для стекания активной составляющей тока, используемой для срабатывания высоковольтного реле защиты. Остальные варианты включения нейтрали будут рассмотрены отдельно ниже.

Без этого устройства используемые схемы включения не могут эффективно выполнять свои защитные функции, поскольку при случайном обрыве нейтрального проводника силовое оборудование подстанций останется незащищённым.

Возможен ещё один вариант, при котором заземление нейтрали в сетях 6-35 кВ осуществляется через включение общей точки в питающую сеть, называемый эффективным заземлением и реализуемый через создание практически идеальных условий для стекания тока в землю.

Читайте также:  Заземляющие устройства, правила монтажа, глубина залегания, нормы установки

Однако он считается слишком дорогостоящим и применяется обычно лишь на питающих подстанциях с входными напряжениями 110 киловольт и выше.

Изолированная

Режим работы нейтрали, в которой нулевая точка отсутствует, именуется изолированным. На схемах ее изображают в виде треугольника, что говорит о наличии только трехфазного провода. Ее использование ограничено сетью 10-35 кВ, а выбор определяется рядом преимуществ:

При возникновении однофазного замыкания на землю потребители не чувствуют неполнофазный режим. Отключения линии не происходит. В момент однофазного замыкания на поврежденной фазе напряжение становится равным 0, на двух оставшихся повышается до линейного.Второе преимущество связывается со стоимостью. Выполнить подобную сеть намного дешевле. К примеру, отсутствует необходимость в нулевом проводе.

Вам будет интересно:Стиральная машина Schaub Lorenz: отзывы, обзор моделей, производитель, преимущества и недостатки

Главным недостатком такого варианта является безопасность. При падении провода сеть не отключается, последний остается под напряжением. При приближении на расстояние ближе восьми метров можно попасть под шаговое напряжение.

Режимы нейтрали электрических сетей.

Различают пять типов сетей трёхфазного переменного тока:

1. Трёхпроводная сеть с изолированной от земли нейтралью. В качестве защитного мероприятия применяют заземление корпусов электрооборудования. Буквенное обозначение IT.

I – от французского слова isole, — изолированная

T – от французского слова terre – земля.

Рисунок 1. Система IТ.

2. Трёхпроводная сеть с глухо заземлённой нейтралью с местным защитным заземлением корпусов. Буквенное обозначение ТТ.

1-я Т – заземление нейтрали,

2-я Т –заземление корпусов оборудования.

Читайте также:  Схема заземления частного дома. TN и TT

Рисунок 2. Система ТТ.

3. Четырёхпроводная сеть с глухо заземлённой нейтралью с использованием нейтрали для зануления корпусов электрооборудования. Буквенное обозначение TN-C.

Эффективно заземленная

Режимы работы нейтралей в электроустановках выше 110 кВ реализованы представленным способом, что обеспечивает требуемые условия защиты сети и безопасности. Нулевая точка трансформатора заземляется на контур или через специальное устройство под названием «ЗОН-110 кВ». Последнее влияет на чувствительность срабатывания защит.

При падении провода создается потенциал между заземлителем и точкой обрыва. Из-за этого срабатывает релейная защита. Отключение производится с минимальной выдержкой времени, после чего включается вновь. Это связывается с тем фактом, что на работоспособность могла повлиять ветка дерева или птица. Повторное включение (АПВ) позволяет выявить реальность повреждения. К преимуществам необходимо отнести следующие моменты:

Относительно низкая стоимость, которая позволяет дешевле выстраивать высоковольтные сети. Следует отметить, что линии электропередач также имеют три провода вместо четырех, что является отличительной особенностью.Повышенная надежность в сочетании с безопасностью. Это считается важным критерием, который определяет выбор представленного вида нейтрали.

Недостатков практически нет. На практике считается, что это идеальный вариант для высоковольтных сетей.

Заземленная через ДГК (ДГР)

Режим нейтралей называется резонансно-заземленным, когда его точка проходит через дугогасящую катушку или реактор. Подобная система в основном применима для кабельных распределительных сетей. Она позволяет компенсировать индуктивность и уберечь систему от более масштабных и сложных повреждений.

При появлении однофазного замыкания на землю начинает работать катушка или реактор, которая компенсирует силу тока, снижая его в месте пробоя. Необходимо отметить, что разница между ДГК и ДГР связывается с наличием автоматической подстройки при изменении индуктивности в сети.

Основным преимуществом является компенсация энергии, которая не дает повреждению кабельной линии перерастать из однофазных в межфазное. Что касается недостатков, это появление прочих повреждений в слабых местах изоляции кабельных линий.

Заземленная через низкоомный, высокоомный резистор

Режим нейтрали, при котором заземление точки нулевой последовательности выполняется через выокоомоный или низкоомный резистор, также считается резонансно-заземленным и используется в сетях 10-35 кВ. Особенности представленной системы связываются с отключением сети без выдержки времени.

Это удобно в плане защиты сети, но негативно влияет на отпуск электрической энергии. Подобная система не подходит для работы ответственных потребителей, хотя является отличным вариантом для кабельных линий. Использование на ВЛ электропередачи непригодно, так как появление земли в сети ведет к отключению фидера.

Еще одним нюансом относительно заземленной нейтрали через резистор является появление больших токов при замыкании на самом резисторе. Имелись случаи, которые приводили к возгоранию подстанции из-за этого момента.

Виды заземления нейтрали в сетях до 1кВ

В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:

  • 1-ая буква описывает способ заземления нейтрали источника питания T (terra) – нейтраль глухозаземленная
  • I (isolate) – нейтраль изолирована (и – изолирована, легко запомнить)

2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей

    T – ОПЧ заземлены независимо от источника питания

    В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C — combine, S — separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.

    Рассмотрим теперь каждую систему более подробно.

    Система заземления TN

    В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль. Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).

    В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.

    Система заземления TT

    Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.

    Система заземления IT

    В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо. Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания. Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.

    Глухозаземленная

    Читайте также:  Стандарты по защите от воздействия электрической дуги

    Режим работы нейтрали трансформатора для потребительской сети именуется глухозаземленным. Особенности следующие. Представленная вариация предполагает заземление нулевой точки на контур подстанции, относительно чего работают защиты. Такая система используется в распределительных сетях, где осуществляется непосредственное потребление электроэнергии.

    Выход 0,4 кВ имеет четыре провода: три фазных и один нулевой. При однофазном замыкании создается потенциал относительно заземленной точки. Это отключает автомат или становится причиной перегорания предохранителей. Следует отметить, что срабатывание защит во многом определяется правильностью выбора плавких вставок или номинал автомата.

    Классификация сетей с глухозаземлённой нейтралью

    Современная система электроснабжения имеет стандартную маркировку где помимо рабочего нулевого проводника присутствует и защитный, что и даёт определение степени защищённости.

    • L — фазный проводник;
    • N — рабочий ноль;
    • РЕ — защитный нулевой проводник;
    • РЕN — рабочий и нулевой проводник выполнены одним проводом.

    Существуют несколько подсистем в цепях с источником энергии, имеющим глухозаземлённую нейтраль:

    • TN-C. При данной системе нулевой и защитный проводник с подстанции организован одним проводником, возле приёмника его корпус (или другие элементы, подлежащие заземлению) соединяют с данным совмещенным проводником – это называется зануление. Это устаревшая система, применялась в старых домах при СССР, сейчас для бытовых потребителей не используется, так как небезопасная. Такая система имеет существенный недостаток, так как в случае обрыва РЕN проводника на пути от питающего трансформатора до приемника электроэнергии, на зануленных корпусах оборудования появляется опасный потенциал. Используется только для защиты промышленных потребителей (об этом говорится ниже в следующем разделе).
    • TN-S. Имеет больший процент безопасности во время аварийных ситуаций. Это достигается путём разделения защитного и рабочего проводников по всей длине питающей линии, от трансформатора до распределительного электрощита (до конечного потребителя). Однако за счёт того, что приходится применять кабельную продукцию имеющую пять жил, что сильно увеличивает стоимость прокладки и бюджет на организацию электроснабжения к потребителю, применяется данная система не всегда.
    • TN-C-S. Данная система заземления является наиболее распространенной в наше время. При данной системе нулевой и защитный проводник на всей длине линии объединены в один совмещенный проводник PEN. При входе в здание данный проводник разделяется на защитный PE и нулевой N, которые дальше распределяются по потребителям (квартирам). При данной системе в случае отгорания PEN проводника до точки разделения на заземленных корпусах электроприборов появится опасный потенциал. Для предотвращения этого на всей длине линии и при входе в здание делаются повторные заземления PEN проводника и предъявляются повышенные требования к механической защите данного проводника.
    • ТТ. Данная система заземления практикуется в том случае, если линия системы TN-C-S находится в неудовлетворительном техническом состоянии и не обеспечивается достаточной безопасности предусмотренного в ней защитного заземления. Данная система заземления предусматривает монтаж индивидуального контура заземления у потребителя, при этом PEN проводник электрической сети используется только в качестве нулевого провода N.

    Советуем изучить — Что такое магнитная индукция

    Содержание

    Что такое системы TN

    TN будут называться системы с использованием глухозаземленной нейтрали для подключения защитных и нулевых функциональных проводников. Важный момент — в таких системах к нулевому проводнику, в свою очередь соединенному с нейтралью, должны быть подключены все корпусные электропроводящие детали.

    Такая система отличается подключением нейтрали к контуру заземления вблизи трансформаторной подстанции. Нейтраль в этом случае не заземляется с помощью дугогасящего реактора.

    image

    На предприятиях промышленного типа наиболее целесообразными являются четырехпроводные трехфазные сети с глухозаземленной нейтралью напряжением 380/220 В со вторичной обмоткой, объединенной в звезду и наглухо соединенной нейтральной точкой с устройством для заземления.

    Двигатели при подключении к фазам сети питаются при линейном напряжении, источником питания ламп является фазное напряжение при подключении их между нейтральными и фазными проводами. N -проводу отводится сразу две роли — он является рабочим, необходимым для присоединения однофазных приемников, и проводом зануления с присоединенными металлическими корпусами установок, которые не находятся под нормальным напряжением.

    Зануление пробоя изоляции обмотки двигателя приведет к появлению большого тока короткого замыкания и срабатыванию механизма защиты, в результате чего двигатель будет отключен от сети. В случае отсутствия зануления корпуса двигателя повреждение изоляции обмотки приведет к созданию опасной ситуации на корпусе касательно земли.

    В случае однофазного КЗ на землю относительно нее напряжения на целых фазах остается прежним, поэтому изоляция может быть устроена с уклоном не на линейное, а на фазное напряжение.

    Главным преимуществом ее использования является возможность предотвращения воспламенения электропроводки за счет автоматического отключения поврежденного участка от сети. Кроме того, в случае короткого замыкания между нейтральным проводом и поврежденной фазой и соответственно увеличивающимся током срабатывают токовые реле, опасность поражения сводится к минимуму.

    Гуру 220→Электропроводка→Заземление и молниезащита→

    Через низкоомное сопротивление

    Заземление нейтрали с помощью небольшого по номинальной величине резистора широко практикуется лишь в нескольких странах (в России и Белоруссии, в частности).

    При этом более логичным кажется использование в этих цепях высокоомного резистора (RB-режим), обеспечивающего низкий уровень перенапряжений в режиме ОЗЗ.

    image

    Для сетей 6-35 киловольт характерны перечисленные ниже режимы заземления нейтрали:

    • прямое соединение с ЗУ, обустроенным непосредственно у подстанции или у высоковольтной опоры (глухозаземленная нейтраль заземления);
    • подключение через специальный дугогасящий реактор или компенсатор;
    • использование для этих целей системы заземления, при которой нейтраль подключается через резистор;
    • без подключения к ЗУ в границах защищаемой линии или объекта (изолированная нейтраль).

    Установка специальных компенсационных элементов в цепи включения нейтрального проводника способствует снижению емкостных составляющих токов замыкания.

    В процессе работы такой цепочки эти токи удаётся нейтрализовать за счёт плавного изменения индуктивности катушки, напряжение в которой имеет обратную фазу.

    https://youtube.com/watch?v=pkRcral1-qI

    image
    image
    image
    image
    image
    image

    При определённом значении индуктивности ток в точке замыкания заземлителя на землю снижается до нулевого значения. Для повышения эффективности действия такого заземления параллельно индуктивности включается резистор, обеспечивающий условия для стекания активной составляющей тока, используемой для срабатывания высоковольтного реле защиты. Остальные варианты включения нейтрали будут рассмотрены отдельно ниже.

    Без этого устройства используемые схемы включения не могут эффективно выполнять свои защитные функции, поскольку при случайном обрыве нейтрального проводника силовое оборудование подстанций останется незащищённым.

    Возможен ещё один вариант, при котором заземление нейтрали в сетях 6-35 кВ осуществляется через включение общей точки в питающую сеть, называемый эффективным заземлением и реализуемый через создание практически идеальных условий для стекания тока в землю.

    Однако он считается слишком дорогостоящим и применяется обычно лишь на питающих подстанциях с входными напряжениями 110 киловольт и выше.

    Системы с изолированной от земли нейтралью

    Режим работы сетей с изолированной нейтралью достаточно распространён в большинстве регионов России. При этом способе подключения нейтральная точка питающего генератора (трансформатора) с расположением обмоток по схеме «треугольник» остаётся незаземлённой.

    Причиной востребованности рассматриваемого варианта является то, что при этой схеме включения нейтрали любое замыкание фазы на землю не может считаться коротким (из-за отсутствия связи через грунт).

    Причём в таком аварийном режиме высоковольтная сеть может работать без особого ущерба в течение нескольких часов.

    К другим достоинствам этой схемы следует отнести малые токи в месте замыкания одной фазы на землю (ОЗЗ) по причине незначительной ёмкости сети относительно грунта.

    В связи с этим такие системы не нуждаются в специальных быстродействующих средствах защиты от ОЗЗ, что значительно сокращает затраты на их эксплуатацию.

    К числу существенных недостатков такого подключения следует отнести:

    • возможность образования перенапряжений с дуговыми эффектами и относительно небольшими токами (до десятков ампер) в точке ОЗЗ;
    • связанная с этим возможность повреждения кабельного или ВВ оборудования по причине разрушения изоляции вследствие дуговых перенапряжений;
    • требование учёта повышенного (линейного 380 Вольт) напряжения при необходимости надёжно изолировать линейное электрооборудование;
    • трудность выявления точного места повреждения.

    Таким образом, перед выбором этого способа подключения нейтрали должны быть учтены все «за» и «против», а также просчитаны возможные последствия аварийных режимов.

    Глухозаземленная нейтраль

    Более прогрессивным способом считается режим глухозаземленной нейтрали. В этом случае нейтраль генератора или трансформатора непосредственно соединяется с заземляющим устройством. В некоторых случаях соединение осуществляется с использованием малого сопротивления, например, трансформатора тока. В отличие от защитного, такое заземление нейтрали называется рабочим. Значение сопротивления заземляющих устройств, соединенных с нейтралью, не должно превышать 4 Ом в электроустановках с напряжением 380/220 вольт.

    В электроустановках, где используется глухозаземленная нейтраль, поврежденный участок должен быстро и надежно отключаться в автоматическом режиме в случае возникновения замыкания между фазой и заземляющим проводником. С связи с этим, при напряжении до 1000 вольт, корпуса оборудования должны обязательно соединяться с заземленной нейтралью установок. Таким образом, обеспечивается быстрое отключение поврежденного участка в случае короткого замыкания с помощью реле максимального тока или предохранителя.

    Резонансно-заземленные или компенсированные нейтрали

    Резонансно-заземленные нейтрали применяются в основном в распределительных сетях напряжением 6-35 кВ, где схема подключения выполняется кабельными линиями. Присоединение нулевой точки осуществляется через специальные плунжерные или регулируемые трансформаторы РУОМ. Подобная система позволяет определить индуктивность в сети при однофазном замыкании, что обеспечивает компенсацию уровня тока.

    Нейтраль такого типа снижает риск развития аварии, переход однофазного замыкания в межфазное. Достоинствами для напряжения 6-35 кВ являются:

    1. Основное преимущество связывается с назначением оборудования. Высокая степень защиты изоляции кабельных линий при правильной подстройке.

    Недостатками сети с таким типом нейтрали считаются:

    1. Трудность настройки. Может возникнуть недокомпенсация или перекомпенсация, что не позволит правильно использовать оборудование. Для выстраивания необходим расчет индуктивности токов в зависимости от длины линии, мощности трансформаторов. В случае изменения схемы или добавления энергооборудования, плунжерные трансформаторы не всегда справляются с поставленными задачами.
    2. Неправильно настроенное оборудование и высокий износ кабельных линий приводит к цепной реакции, которая предполагает выход из строя нескольких слабых участков сети.
    3. Повышение технических потерь, которые возникают во время работы, а также проблемы безопасности. Компенсация тока на подстанции реализовывается относительно земли.
    4. Невозможность определения линии, где произошло замыкание. Процесс выбора фидера с «землей» осуществляется через сравнение токов гармоник, что не всегда считается эффективным средством получения достоверной информации.

    Оцените статью
    Рейтинг автора
    4,8
    Материал подготовил
    Максим Коновалов
    Наш эксперт
    Написано статей
    127
    А как считаете Вы?
    Напишите в комментариях, что вы думаете – согласны
    ли со статьей или есть что добавить?
    Добавить комментарий