Закон Ома для полной цепи и для участка цепи: варианты записи формулы, описание и объяснение

На этой странице вы можете рассчитать силу тока, напряжение и сопротивление по закону Ома с помощью удобных калькуляторов онлайн

Закон Ома — один из фундаментальных законов электродинамики, который определяет взаимосвязь между напряжением, сопротивлением и силой тока. Он был открыт эмпирическим путем Георгом Омом в 1826 году.

Содержание

Закон Ома для участка цепи

Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению участка цепи

{I= dfrac{U}{R}}, где I — сила тока, U — напряжение, R — сопротивление.

Найти силу тока

{I= dfrac{U}{R}}

Сила тока (I) в проводнике прямо пропорциональна напряжению (U) на его концах и обратно пропорциональна его сопротивлению (R).

Формула для нахождения силы тока по закону Ома, если известны напряжение и сопротивление:

{I= dfrac{U}{R}}, где I — сила тока, U — напряжение, R — сопротивление.

Найти напряжение

{U= I cdot R}

Падение напряжение на проводнике равно произведению сопротивления проводника на силу тока в нем.

Формула для нахождения напряжения по закону Ома, если известны сила тока и сопротивление:

{U= I cdot R}, где U — напряжение, I — сила тока, R — сопротивление.

Найти сопротивление

{R= dfrac{U}{I}}

Сопротивление проводника прямо пропорционально напряжению на его концах и обратно пропорционально величине силы тока, протекающего через него.

Формула для нахождения сопротивления по закону Ома, если известны сила тока и напряжение:

{R= dfrac{U}{I}}, где R — сопротивление, U — напряжение, I — сила тока.

Просмотров страницы: 43534

Георг Симон Ом начал свои исследования вдохновляясь знаменитым трудом Жана Батиста Фурье «Аналитическая теория тепла». В этой работе Фурье представлял тепловой поток между двумя точками как разницу температур, а изменение теплового потока связывал с его прохождением через препятствие неправильной формы из теплоизолирующего материала. Аналогично этому Ом обуславливал возникновение электрического тока разностью потенциалов.

История

Исходя из этого Ом стал экспериментировать с разными материалами проводника. Для того, чтобы определить их проводимость он подключал их последовательно и подгонял их длину таким образом, чтобы сила тока была одинаковой во всех случаях.

Важно при таких измерениях было подбирать проводники одного и того же диаметра. Ом, замеряя проводимость серебра и золота, получил результаты, которые по современным данным не отличаются точностью. Так, серебряный проводник у Ома проводил меньше электрического тока, чем золотой. Сам Ом объяснял это тем, что его проводник из серебра был покрыт маслом и из-за этого, по всей видимости, опыт не дал точных результатов.

Однако не только с этим были проблемы у физиков, которые в то время занимались подобными экспериментами с электричеством. Большие трудности с добычей чистых материалов без примесей для опытов, затруднения с калибровкой диаметра проводника искажали результаты тестов. Еще большая загвоздка состояла в том, что сила тока постоянно менялась во время испытаний, поскольку источником тока служили переменные химические элементы. В таких условиях Ом вывел логарифмическую зависимость силы тока от сопротивления провода.

Немногим позже немецкий физик Поггендорф, специализировавшийся на электрохимии, предложил Ому заменить химические элементы на термопару из висмута и меди. Ом начал свои эксперименты заново. В этот раз он пользовался термоэлектрическим устройством, работающем на эффекте Зеебека в качестве батареи. К нему он последовательно подключал 8 проводников из меди одного и того же диаметра, но различной длины. Чтобы измерить силу тока Ом подвешивал с помощью металлической нити над проводниками магнитную стрелку. Ток, шедший параллельно этой стрелке, смещал ее в сторону. Когда это происходило физик закручивал нить до тех пор, пока стрелка не возвращалась в исходное положение. Исходя из угла, на который закручивалась нить можно было судить о значении силы тока.

В результате нового эксперимента Ом пришел к формуле:

Х = a / b + l

Здесь X – интенсивность магнитного поля провода, l – длина провода, a – постоянная величина напряжения источника, b – постоянная сопротивления остальных элементов цепи.

Если обратиться к современным терминам для описания данной формулы, то мы получим, что Х – сила тока, а – ЭДС источника, b + l – общее сопротивление цепи.

Zakon Oma formuly

Закон Ома для участка цепи

Закон Ома для отдельного участка цепи гласит: сила тока на участке цепи увеличивается при возрастании напряжения и уменьшается при возрастании сопротивления этого участка.

I = U / R

Исходя из этой формулы, мы можем решить, что сопротивление проводника зависит от разности потенциалов. С точки зрения математики, это правильно, но ложно с точки зрения физики. Эта формула применима только для расчета сопротивления на отдельном участке цепи.

Чтобы рассчитать сопротивление проводника, нужно перемножить его длину на удельное сопротивление его материала и разделить на площадь поперечного сечения.

Таким образом формула для расчета сопротивления проводника примет вид:

R = p ⋅ l / s

Закон Ома для полной цепи

Отличие закона Ома для полной цепи от закона Ома для участка цепи заключается в том, что теперь мы должны учитывать два вида сопротивления. Это «R» сопротивление всех компонентов системы и «r» внутреннее сопротивление источника электродвижущей силы. Формула таким образом приобретает вид:

I = U / R + r

Закон Ома для переменного тока

Переменный ток отличается от постоянного тем, что он изменяется с определенными временными периодами. Конкретно он изменяет свое значение и направление. Чтобы применить закон Ома здесь нужно учитывать, что сопротивление в цепи с постоянным током может отличатся от сопротивления в цепи с током переменным. И отличается оно в том случае если в цепи применены компоненты с реактивным сопротивлением. Реактивное сопротивление может быть индуктивным (катушки, трансформаторы, дроссели) и емкостными (конденсатор).

Попробуем разобраться, в чем реальная разница между реактивным и активным сопротивлением в цепи с переменным током. Вы уже должны были понять, что значение напряжение и силы тока в такой цепи меняется со временем и имеют, грубо говоря, волновую форму.

Если мы схематически представим, как с течением времени меняются эти два значения, у нас получится синусоида. И напряжение, и сила тока от нуля поднимаются до максимального значения, затем, опускаясь, проходят через нулевое значение и достигают максимального отрицательного значения. После этого снова поднимаются через нуль до максимального значения и так далее. Когда говорится, что сила тока или напряжение имеет отрицательное значение, здесь имеется ввиду, что они движутся в обратном направлении.

Весь процесс происходит с определенной периодичностью. Та точка, где значение напряжения или силы тока из минимального значения поднимаясь к максимальному значению проходит через нуль называется фазой.

На самом деле, это только предисловие. Вернемся к реактивному и активному сопротивлению. Отличие активного сопротивления от реактивного в том, что в цепи с активным сопротивлением фаза тока совпадает с фазой напряжения. То есть, и значение силы тока, и значение напряжения достигают максимума в одном направлении одновременно. В таком случае наша формула для расчета напряжения, сопротивления или силы тока не меняется.

Если же цепь содержит реактивное сопротивление, фазы тока и напряжения сдвигаются друг от друга на ¼ периода. Это означает, что, когда сила тока достигнет максимального значения, напряжение будет равняться нулю и наоборот. Когда применяется индуктивное сопротивление, фаза напряжения «обгоняет» фазу тока. Когда применяется емкостное сопротивление, фаза тока «обгоняет» фазу напряжения.

Формула для расчета падения напряжения на индуктивном сопротивлении:

U = I ⋅ ωL

Где L – индуктивность реактивного сопротивления, а ω – угловая частота (производная по времени от фазы колебания).

Формула для расчета падения напряжения на емкостном сопротивлении:

U = I / ω ⋅ С

С – емкость реактивного сопротивления.

Эти две формулы – частные случаи закона Ома для переменных цепей.

Полный же будет выглядеть следующем образом:

I = U / Z

Здесь Z – полное сопротивление переменной цепи известное как импеданс.

Сфера применения

Закон Ома не является базовым законом в физике, это лишь удобная зависимость одних значений от других, которая подходит почти в любых ситуациях на практике. Поэтому проще будет перечислить ситуации, когда закон может не срабатывать:

  • Если есть инерция носителей заряда, например, в некоторых высокочастотных электрических полях;
  • В сверхпроводниках;
  • Если провод нагревается до такой степени, что вольтамперная характеристика перестает быть линейной. Например, в лампах накаливания;
  • В вакуумных и газовых радиолампах;
  • В диодах и транзисторах.

Похожие темы:

РубрикаРАСЧЁТЫ image

ЗАКОН ОМА (по имени немецкого физика Г. Ома (1787-1854)) – единица электрического сопротивления. Обозначение Ом. Ом – сопротивление проводника, между концами которого при силе тока 1 А возникает напряжение 1 В.

Закон Ома гласит: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка.

И записывается формулой: R = U/ I.(Где: — сила тока (А), U — напряжение (В), R — сопротивление (Ом).)

Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д., также, как и Законы Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Взаимосвязь между падением напряжения на проводнике, его сопротивлением и силой тока легко запоминается в виде треугольника, в вершинах которого расположены символы U, I, R.

Законы Кирхгофа

Законы Кирхгофа (или правила Кирхгофа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного и квазистационарного тока. Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Применение правил Кирхгофа к цепи позволяет получить систему линейных уравнений относительно токов, и соответственно, найти значение токов на всех ветвях цепи.

Первый закон (ЗТК, Закон токов Кирхгофа) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит узлов, то она описывается p − 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

Второй закон (ЗНК, Закон напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений:

для переменных напряжений:

Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве , то она описывается уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

На этом рисунке для каждого проводника обозначен протекающий по нему ток (буквой «I») и напряжение между соединяемыми им узлами (буквой «U»)

Например, для приведённой на рисунке цепи, в соответствии с первым законом выполняются следующие соотношения:

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например здесь, токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными.

В соответствии со вторым законом, справедливы соотношения:

Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), перепад напряжения считается положительным, в противном случае — отрицательным.

Законы Кирхгофа, записанные для узлов и контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и напряжения.

Существует мнение, согласно которому «Законы Кирхгофа» следует именовать «Правилами Кирхгофа», ибо они не отражают фундаментальных сущностей природы (и не являются обобщением большого количества опытных данных), а могут быть выведены из других положений и предположений.



Закон Ома часто называют основным законом электричества. Открывший его в 1826 г. известный немецкий физик Георг Симон Ом установил зависимость между основными физическими величинами электрической цепи – сопротивлением, напряжением и силой тока.

Электрическая цепь

Чтобы лучше понять смысл закона Ома, нужно представлять, как устроена электрическая цепь.

Что же такое электрическая цепь? Это путь, который проходят электрически заряженные частицы (электроны) в электрической схеме.

Чтобы в электрической цепи существовал ток, необходимо наличие в ней устройства, которое создавало бы и поддерживало разность потенциалов на участках цепи за счёт сил неэлектрического происхождения. Такое устройство называется источником постоянного тока, а силы – сторонними силами.

Электрическую цепь, в которой находится источник тока, называют полной электрической цепью. Источник тока в такой цепи выполняет примерно такую же функцию, что и насос, перекачивающий жидкость в замкнутой гидравлической системе.

Простейшая замкнутая электрическая цепь состоит из одного источника и одного потребителя электрической энергии, соединённых между собой проводниками.

Параметры электрической цепи

Электрический ток в такой цепи представляет собой движение электронов в проводнике. И хотя в действительности они движутся по направлению к положительному полюсу источника, в физике направлением тока принято считать движение от положительного полюса к отрицательному.

Количество заряженных частиц, протекающих через поперечное сечение проводника, называется силой тока. Обозначается эта величина буквой I и измеряется в амперах.

Но проводник оказывает сопротивление движению электронов. Величину, характеризующую противодействие электрической цепи или её участка электрическому току, называют электрическим сопротивлением. Его величина называется омом в честь знаменитого физика и обозначается буквой R.

Величина, равная разности потенциалов источника электрического тока, называется электрическим напряжением. Обозначается буквой U. Измеряется в вольтах.

Участок цепи без источника тока называют внешней цепью. Её сопротивление обозначают буквой R, а внутреннее сопротивление источника – r. ЭДС источника обозначается символом ε. ЭДС источника состоит из падения напряжения U во внешней цепи и падения напряжения U1 на самом источнике.

ε = U+U1,

Внешняя цепь рассматривается как участок цепи. Вообще, любую электрическую цепь можно представить в виде участков, между двумя точками которых течёт электрический ток. Каждый участок можно охарактеризовать падением напряжения U, сопротивлением R I.

Опытным путём Ом установил взаимосвязь между этими основными параметрами электрической цепи: «Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению на этом участке».

I= U/R

Это и есть формула закона Ома для участка цепи.

Опыт Ома

Свой знаменитый закон Ом вывел экспериментальным путём.

Проведём несложный опыт.

Соберём электрическую цепь, в которой источником тока будет аккумулятор, а прибором для измерения тока – последовательно включенный в цепь амперметр. Нагрузкой служит спираль из проволоки. Напряжение будем измерять с помощью вольтметра, включенного параллельно спирали. Замкнём с помощью ключа электрическую цепь и запишем показания приборов.

Подключим к первому аккумулятору второй с точно таким же параметрами. Снова замкнём цепь. Приборы покажут, что и сила тока, и напряжение увеличились в 2 раза.

Если к 2 аккумуляторам добавить ещё один такой же, сила тока увеличится втрое, напряжение тоже утроится.

Вывод очевиден: сила тока в проводнике прямо пропорциональна напряжению, приложенному к концам проводника.

В нашем опыте величина сопротивления оставалась постоянной. Мы меняли лишь величину тока и напряжения на участке проводника. Оставим лишь один аккумулятор. Но в качестве нагрузки будем использовать спирали из разных материалов. Их сопротивления отличаются. Поочерёдно подключая их, также запишем показания приборов. Мы увидим, что здесь всё наоборот. Чем больше величина сопротивления, тем меньше сила тока. Сила тока в цепи обратно пропорциональна сопротивлению.

Итак, наш опыт позволил нам установить зависимость силы тока от величины напряжения и сопротивления.

Конечно, опыт Ома был другим. В те времена не существовало амперметров, и, чтобы измерить силу тока, Ом использовал крутильные весы Кулона. Источником тока служил элемент Вольта из цинка и меди, которые находились в растворе соляной кислоты. Медные проволоки помещались в чашки со ртутью. Туда же подводились концы проводов от источника тока. Проволоки были одинакового сечения, но разной длины. За счёт этого менялась величина сопротивления. Поочерёдно включая в цепь различные проволоки, наблюдали за углом поворота магнитной стрелки в крутильных весах. Собственно, измерялась не сама сила тока, а изменение магнитного действия тока за счёт включения в цепь проволок различного сопротивления. Ом называл это «потерей силы».

Но так или иначе эксперименты учёного позволили ему вывести свой знаменитый закон.

Георг Симон Ом

Закон Ома для полной цепи

Между тем, формула, выведенная самим Омом, выглядела так:

Это не что иное, как формула закона Ома для полной электрической цепи: «Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений внешней цепи и внутреннего сопротивления источника».

В опытах Ома величина Х показывала изменение величины тока. В современной формуле ей соответствует сила тока I, протекающего в цепи. Величина а характеризовала свойства источника напряжения, что соответствует современному обозначению электродвижущей силы (ЭДС) ε. Значение величины l зависело от длины проводников, соединявших элементы электрической цепи. Эта величина являлась аналогией сопротивления внешней электрической цепи R. Параметр b характеризовал свойства всей установки, на которой проводился опыт. В современной обозначении это r – внутреннее сопротивление источника тока.

Как выводится современная формула закона Ома для полной цепи?

ЭДС источника равна сумме падений напряжений на внешней цепи (U) и на самом источнике (U1).

ε = U+U1.

Из закона Ома I= U/R следует, что U= I· R, а U1= I· r.

Подставив эти выражения в предыдущее, получим:

ε = I · R + I · r = I · (R + r), откуда

По закону Ома напряжение во внешней цепи равно произведению силы тока на сопротивление. U = I · R. Оно всегда меньше, чем ЭДС источника. Разница равна величине U1 = I · r.

Что происходит при работе батарейки или аккумулятора? По мере того, как разряжается батарейка, растёт её внутренне сопротивление. Следовательно, увеличивается U1 и уменьшается U.

Полный закон Ома превращается в закон Ома для участка цепи, если убрать из него параметры источника.

Короткое замыкание

А что произойдёт, если сопротивление внешней цепи вдруг станет равно нулю? В повседневной жизни мы можем наблюдать это, если, например, повреждается электрическая изоляция проводов, и они замыкаются между собой. Возникает явление, которое называется коротким замыканием. Ток, называемый током короткого замыкания, будет чрезвычайно большим. При этом выделится большое количество теплоты, которое может привести к пожару. Чтобы этого не случилось, в цепи ставят устройства, называемые предохранителями. Они устроены так, что способны разорвать электрическую цепь в момент короткого замыкания.

Закон Ома для переменного тока

В цепи переменного напряжения кроме обычного активного сопротивления встречается реактивное сопротивление (ёмкости, индуктивности).

Для таких цепей U= I· Z, где Z – полное сопротивление, включающее в себя активную и реактивную составляющие.

Но большим реактивным сопротивлением обладают мощные электрические машины и силовые установки. В бытовых приборах, окружающих нас, реактивная составляющая настолько мала, что её можно не учитывать, а для расчётов использовать простую форму записи закона Ома:

I= U/R

С помощью закона Ома можно рассчитать параметры любой электрической цепи.

Мощность и закон Ома

Ом не только установил зависимость между напряжением, током и сопротивлением электрической цепи, но и вывел уравнение для определения мощности:

P= U· I= I2· R

Как видим, чем больше ток или напряжение, тем больше мощность. Так как проводник или резистор не является полезной нагрузкой, то мощность, которая приходится на него, считается мощностью потерь. Она идёт на нагревание проводника. И чем больше сопротивление такого проводника, тем больше теряется на нём мощности. Чтобы уменьшить потери от нагревания, в цепи используют проводники с меньшим сопротивлением. Так делают, например, в мощных звуковых установках.

Вместо эпилога

Небольшая подсказка для тех, кто путается и не может запомнить формулу закона Ома.

Разделим треугольник на 3 части. Причём, каким образом мы это сделаем, совершенно неважно. Впишем в каждую из них величины, входящие в закон Ома – так, как показано на рисунке.

Закроем величину, которую нужно найти. Если оставшиеся величины находятся на одном уровне, то их нужно перемножить. Если же они располагаются на разных уровнях, то величину, расположенную выше, необходимо разделить на нижнюю.

Закон Ома широко применяется на практике при проектировании электрических сетей в производстве и в быту. 

Электроны – отрицательно заряженные элементы из тех, что вращаются вокруг ядра атома и выступают основными носителями электрических зарядов. Внутренняя область ядра атома заполнена положительно заряженными протонами. Однако, причём здесь Закон Ома как таковой?

Принцип транспорта лишних электронов

Когда число отрицательно заряженных электронов сравнивается с числом положительно заряженных протонов, электрические заряды компенсируют друг друга. Атом приобретает состояние нейтрально заряженной частицы.

Можно изменить нейтральное состояние, добавив (или удалив) электрон, тогда система приобретает электрически заряженное состояние. Добавление электрона делает систему отрицательно заряженной.

Удаление электрона делает систему положительно заряженной. Свою роль играет в этом процессе Закон Ома.

Если положительно заряженная система присоединена к отрицательно заряженной системе (например, с помощью провода или другого проводящего предмета), начинается процесс.

Лишние электроны из отрицательно заряженной системы устремятся к положительно заряженной системе. При этом поток электронов, протекающий через проводник, образует состояние, именуемое током.

Закон Ома и факторы прохождения электротока

Ток измеряется в амперах (A), что соответствует прохождению 6,25×1018 электронов в секунду, а направление тока традиционно противоположно действительному потоку электронов. То есть электрический ток течёт от положительной области к отрицательной области.

Величина тока (I), создаваемого между двумя подключенными противоположно заряженными системами, зависит от двух факторов:

  1. Напряжения (V).
  2. Сопротивления (R).

Напряжение  (электрический потенциал) — энергия, приходящаяся на один электрон системы. Эта энергия связана разницей зарядов положительной и отрицательной сторон системы. Напряжение или потенциал измеряется вольтами (джоуль / кулонами):

1V = 1Дж / Кл

Поскольку электроны движутся через объект, логичной видится тенденция столкновений с атомами и другими электронами. Энергия, образованная столкновениями, выделяется теплом. Объём выделяемого тепла зависит от сопротивления материала, через который протекает ток.

image
Структурная составляющая постоянного сопротивления: 1, 2 – концевые соединительные проводники; 3 – изоляционный материал; 4 – спиральная бороздка; 5 – резистивная плёнка

Сопротивление измеряется в Омах (Ом) и показывает, сколько материала блокирует движение электронов. При проектировании электрической цепи, устройства, обладающие высоким сопротивлением, допускается размещать на пути движущихся электронов. Таким способом уменьшают поток, соответственно, снижают электрический ток.

Такого рода устройства получили название резисторов. При помощи приборов можно наблюдать: когда напряжение увеличивается, величина тока также увеличивается. Рост сопротивления приводит к снижению роста тока. Эти моменты удачно демонстрирует закон Ома:

V = I * R или R = V / R

где I — величина тока, V — напряжение, R — сопротивление материала.

Резисторы и другие электрические устройства обычно располагаются двумя различными способами, чтобы тем самым образовать цепь для прохождения электронов.

Последовательные цепи предполагают расположение всех устройств такой схемой, чтобы электроны проходили через каждое устройство. Параллельные цепи обычно имеют два или более различных пути прохождения электронов через резисторы и устройства.

image
Схемы соединений цепей: А – последовательное включение (R1, R2) с источником тока (ИП); В – параллельное включение (R1, R2) с источником тока (ИП)

Последовательные цепи

Имеются в виду схемы, когда резисторы расположены последовательно один за другим. Транспортный ток через каждый резистор, одинаков:

I общ = IR1 = IR2 = ….

Для вычисления полного сопротивления цепи достаточно сложить сопротивление каждого резистора:

R общ = R1 + R2 + ….

Общее напряжение цепи также определяется суммированием значения напряжения, приходящегося на каждый отдельный резистор.

Однако следует учитывать разницу напряжений на каждом резисторе. Поэтому расчёт ведётся по закону Ома. Например, для резистора R2 действительна формула:

V = I * R2

Параллельные цепи

Правила, регулирующие параллельные цепи, несколько отличаются от расчёта последовательных цепей. Когда резисторы расположены параллельно друг другу, напряжение на каждом резисторе одинаково:

V общ = V1 = V2 = ….

Для получения обратного значения полного сопротивления цепи необходимо сложить обратное сопротивление каждого резистора:

1 / R общ = 1 / R1 + 1 / R2 + ….

image
Лабораторная схема, посредством которой выполняются исследовательские работы на предмет изучения Закона Ома. Значения сопротивлений схемы могут быть любыми

Общий ток цепи несложно найти суммированием тока, протекающего через каждый отдельный резистор. Однако ток через каждый резистор отличается, а потому опять же рассчитывается Законом Ома:

I1 = V / R1

Электрические цепи допускают включение резисторов, как в параллельном, так и последовательном расположении. В подобных случаях применяется формула последовательного или параллельного расчёта для получения нужных значений.

Какие проводники не подчиняются закону Ома?

Закон Ома, указывающий на пропорциональность напряжений и токов, верен для многих практических случаев. Однако есть исключения.

Так, обычная электролампа прямого накала проводит ток, но при этом не подчиняется закону Ома. Если прикладывать разные напряжения к лампе прямого накала, измерение тока лампы покажет разные значения отношения:

V / I

Эта особенность делает невозможным определение истинного сопротивления электролампы прямого накала. Проводники, обладающие сопротивлением, всегда дают одинаковое соотношение V / I, независимо от прикладываемого напряжения. В таких случаях фактически справедлива формула:

V / I = R

Лабораторное исследование Закона Ома

Рассмотрим действие Закона Ома через исследования лабораторным путём с использованием последовательных и параллельных цепей. Схема, подходящая для эксперимента, представлена выше на картинке.

Инструментально потребуются два прибора: измеритель напряжения (вольтметр), измеритель силы тока (амперметр). Обычно оба измерителя представлены единой конструкцией прибора, именуемого – мультиметр.

image
Конструкций мультиметров в современном (цифровом) исполнении существует множество. Каждый прибор, как правило, поддерживает измерение напряжения, тока, сопротивлений и прочих электрических величин

Исследование последовательной схемы включения

  • Подключить источник питания к двум последовательно подключенным резисторам, подключив положительную клемму источника питания к V1 и отрицательную клемму к V3.
  • Подключить измеритель напряжения к V1 и V3 и отрегулировать источник питания так, чтобы показания вольтметра составляли 5 вольт.
  • Измерить напряжение между точками V1 и V2 и между точками V2 и V3.
  • Отключить вольтметр, подключить амперметр к точке C1. Измерить ток в точке С1.
  • Используя уравнение, рассчитать сопротивление резистора между точками V2 и V3. Рассчитать сопротивление между V1 и V2. Найти процентную погрешность расчетного значения и значений R.

Исследование параллельной схемы включения

  • Подключить источник питания параллельно к двум резисторам, подключив положительную клемму источника питания к V3, а отрицательную клемму к V4.
  • Подключить вольтметр к V3 и V4 и отрегулировать источник питания так, чтобы показания вольтметра составляли 5 вольт.
  • При помощи амперметра измерить ток в точке C2.
  • Используя уравнение, рассчитать сопротивление R= 91 Ом.
  • Рассчитать общее сопротивление двух параллельных элементов. Подсчитать сумму тока через параллельную цепь, а также через R=110 Ом.

Вопросы на проверку понимания Закона Ома

    1. Есть N-е число резисторов, все с равным сопротивлением R. Каково общее сопротивление, если все элементы включены последовательно?
    2. Есть N-е число элементов, все с равным сопротивлением R. Каково общее сопротивление, если все элементы включены параллельно?
    3. Если следовать Закону Ома, какой ток присутствует в замкнутой цепи без резисторов?

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий