Полевой транзистор схема управления нагрузкой постоянного тока

Содержание

Транзистор усиливает, преобразует и генерирует электрический импульс. Твердотельный модуль включает стационарные части, при этом отличается компактными габаритами. В электронике применяют несколько видов транзисторов, чтобы оперировать магнитными свойствами и скалярными величинами, координировать вращение электронов, оперировать энергетическими квантами.

Содержание

Общая информация о транзисторах

Устройства подразделяют на биполярные, полевые, комбинированные. Основой модулей берут полупроводник из германия, химического неметалла кремния, соединения мышьяка и галлия. Ведущее место отводят биполярным моделям, но первоначально ставку делали на полярные.

Электрический ток образуется зарядными носителями, а границы переключения определяются силой сигнала:

  • малый — сильный импульс;
  • открытое — закрытое положение.

По скорости передачи энергии различают транзисторы:

  • маломощные — до 0,1 Вт;
  • средние — 0,1 – 1,0 Вт;
  • мощные — свыше 1 Вт.

Комбинированные материалы представлены различными сочетаниями для повышения технологических свойств. Другие материалы для изготовления используют редко, например, светопрозрачные полупроводники для матричных дисплеев. Есть сообщения о создании транзисторов на базе полимеров, углеродных нанотрубок, графенов.

Разбираетесь в транзисторах? Да 25.71% Нет 34.29% Пытаюсь разобраться 40% Проголосовало: 35

Устройство

Прибор может быть заключен в металлическом или пластмассовом корпусе. В первом случае изоляторы для выводов делают из керамики или стекла. В пластиковых коробках ставят теплоотвод из металла для установки модуля на внешний радиатор.

Вместе с полупроводником конструкция содержит:

  • стальные выводы;
  • элементы-изоляторы;
  • корпус.

По конструкции приборы делят на виды:

  • дискретные — корпусные и бескорпусные для отдельного монтажа, установки на радиатор, в паечных автоматизированных системах;
  • в структуре интегральных микросхем.

Строение позволяет получать разные виды генераторов для преобразования переменного тока из постоянного.

Применение

Сам транзистор не может усиливать мощность источника питания, но является главным элементом усилительной системы. Он помогает управлять мощностью на выходе, во много раз превышающую показатель управления. Его включают в разрыв между нагрузкой и подающим источником питания, при этом сопротивление поддается быстрому измерению.

Сферы применения:

  • Усилительные (УНЧ) схемы. Используют биполярные и полевые типы, устройства работают в ключевом регламенте регенераторов цифровых импульсов.
  • Системы усиления высокой частоты (УВЧ). Транзисторы ставят на входных контурах приемников Р.Т.А.
  • В качестве генераторов импульсов. Используют для возбуждения прямоугольных (ключевой режим) и произвольных сигналов (линейный регламент).
  • Их также используют в электропереключательных и усиливающих каскадах в виде активных приборов.

Базовый принцип работы

Полупроводниковый транзистор подключают к выводам одноименного вольтажа к базе и эмиттеру, при этом p соединяют с положительным, а n — с отрицательным электродом. В результате между ними появляется ток, а число зарядных носителей в базе зависит от величины напряжения. Ток, идущий к базе, именуют управляющим.

Особенности работы:

  • если к коллектору подать обратное напряжение, между ним и эмиттером пойдет ток из-за разницы потенциалов;
  • повышение объема зарядных носителей приведет к усилению тока;
  • небольшой рост напряжения значительно усиливает ток, что используют при создании усилителей;
  • если на эмиттер подают вольтаж, противоположный по знаку, образование тока останавливается, а транзистор становится в закрытое положение.

Принцип работы транзистора заключается в том, что при использовании одноименной полярности прибор находится в открытом положении, обратные по знаку заряды приводят к закрытию устройства.

Обозначение

Условное позиционирование NPN и PNP транзисторов отличаются, при этом они отражают структуру и принцип работы модуля в электрическом контуре.

Стрелку ставят между базой и эмиттером для показа курса управляющего электротока;

  • у NPN транзисторов указатель сориентирован к эмиттеру от базы, расположение показывает, что в активной фазе электроны движутся в этом направлении;
  • у PNP разновидности стрелка стоит в направлении базы от эмиттера, что говорит о курсе управляющего электротока.

Для обозначения выводов на схеме применяют буквы: коллектор (К), база (Б), эмиттер (Э). На иностранных чертежах литеры меняют, соответственно на: С, В, Е. На плате недалеко от детали может быть обозначение Q, например, Q303. Это означает, что этот транзистор — триста третий по порядку в схеме.

Биполярный транзистор

Полупроводниковое устройство состоит из трех разных по проводимости слоев, к каждому из которых подсоединены проводящие контакты.

По степени электропроводности коллекторный, базовый и эмиттерный слой отличаются мало, но при производстве подвергаются разному уровню легирования:

  • Первый легируется слабо, что дает возможность повысить коллекторный вольтаж.
  • В эмиттерный добавляют много примесей при изготовлении. Объем обратного пробойного напряжения не становится критичным, т. к. приборы функционируют с прямосмещенным переходом. Усиленное легирование дает повышенную инжекцию вторичных зарядоносителей в базовый слой.

Базовая прослойка легируется мало, т. к. находится между коллектором и эмиттером, этот слой должен показывать большое сопротивление.

Как работает

Зарядные носители передвигаются к коллектору сквозь тонкий базовый слой. Средняя прослойка отделена от верхнего и нижнего p-n переходами.

Особенности функционирования:

  • Ток проходит сквозь транзистор, если зарядные носители инжектируются посредством p-n перехода в базовую прослойку из эмиттерной.
  • В результате снижается потенциальная преграда при подаче прямого смещения.
  • В базовой прослойке инжектируемые заряды — не основные носители, поэтому ускоряются и поступают в другие p-n переходы к коллекторному пласту от базовой прослойки.
  • В базе заряды распространяются под действием диффузии или электрического поля.

Эффективность транзистора повышается, если использована тонкая базовая прослойка, но чрезмерное утончение снижает предел допустимого вольтажа коллектора.

Схема включения

Для установки в схему у транзистора есть три вывода. При подключении один контакт определяют, как общий.

Различают схемы подсоединения:

  • С совместным эмиттером. Часто используемая схема усиливает ток и напряжение (отмечается наибольшее повышение мощности). Входной импульс поступает на базовый слой со стороны эмиттера, снимается — с коллектора и инвертируется.
  • С совместным коллектором. Повышается только электроток, коэффициент усиления вольтажа равен 1, сопротивление на входе высокое, а на выходе маленькое. Подключение поддерживает большой промежуток усиливаемых частот.

Если общим при подсоединении служит базовый слой, усиливается напряжение, поэтому его используют чаще в составных системах, но не в однотранзисторных.

Полевой транзистор

Назначение то же, что и биполярного, но разное строение. Транзисторы координируют более высокие мощности при аналогичных размерах.

В структуре есть элементы:

  • сток для приемки большого напряжения;
  • затвор для управляемого напряжения;
  • исток для раздачи напряжения при открытом положении.

Валера Голос строительного гуру Различают устройства полевого типа: с управлением посредством p-n-перехода, с электроизолированным затвором. В первом случае на противоположных боках полупроводника получаются участки разной электропроводимости для управления электротоком. Во втором виде затвор отделен от канала диэлектрическим материалом.

Как работает

В устройстве полевого типа ток проходит к стоку сквозь канал в легированном проводнике под затвором. Он расположен между нелегированной прослойкой (в ней отсутствуют зарядные носители) и затвором. Здесь присутствует участок обеднения, где ток не проводится.

Размер канала по ширине ограничен областью между участком обеднения и прослойкой. Силой тока управляют с помощью изменения вольтажа, приложенного к затвору. В этом случае меняется канальное сечение, и ток на выходе меняет величину.

Схемы включения

Полевые транзисторы подключают одним из трех способов:

  • с общим стоком;
  • с совместным истоком;
  • с общей базой.

Схема с общим стоком аналогична подключению биполярного модуля с совместным коллектором. Используют тип подсоединения в согласующихся каскадах, где нужно входное напряжение большое, а на выходе — низкое. Включение поддерживает широкий диапазон частот.

Схема с общим истоком дает большое увеличение мощности и электротока, при этом фаза напряжения контура стока переворачивается. Сопротивление на входе может быть несколько сотен мегаОм, чтобы его снизить, добавляют между истоком и затвором резистор.

В схеме с общим затвором нет усиления электротока, повышение мощности небольшое. Напряжение находится в аналогичной фазе с управляющим. При изменении входного импульса напряжение на истоке повышается или понижается.

Комбинированные транзисторы

Гибрид полевого и биполярного устройства обладает положительными чертами двух приборов. Суть с том, что биполярный транзистор большой мощности управляется полевым. Большую нагрузку можно изменять, используя малую мощность, т. к. регулирующий импульс подается на затвор устройства полевого типа.

Внутреннее строение комбинированных транзисторов — каскадное подсоединение двух входных ключей для регулировки конечного плюса. При подаче положительного вольтажа с истока на затвор начинает работать полевой тип, возникает канал передачи между истоком и стоком.

Перемещение зарядных носителей между участками p-n переходов включает биполярное устройство, поэтому происходит перемещение электротока к коллектору от эмиттера.

Для чего применяются полевые транзисторы?

Они используются в схемах микшеров для телевизоров и радиоприемников из-за низких модуляционных искажений. Более того, полевые транзисторы также применяют в резисторах с переменным напряжением в операционных усилителях, схемах контроля звука, ведь они обеспечивают большую изоляцию между их выводами затвора и стока.

Почему полевые транзисторы называют Униполярными?

Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы называются униполярными (в отличие от биполярных).

Чем отличаются биполярные и полевые транзисторы?

От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем.

Где используют биполярные транзисторы?

Именно поэтому прибор получил название «биполярный» (от англ. bipolar), в отличие от полевого (униполярного) транзистора. Применяется в электронных устройствах для усиления или генерации электрических колебаний, а также в качестве коммутирующего элемента (например, в схемах ТТЛ).

На чем основана работа полевого транзистора?

К классу полевых относят транзисторы, принцип действия которых основан на использовании носителей заряда только одного знака (электронов или дырок). Управление током в полевых транзисторах осуществляется изменением проводимости канала, через который протекает ток транзистора под воздействием электрического поля.

Читайте также  Где применяется резонанс напряжений?

Для чего используются транзисторы?

Транзисторы применяются в качестве активных (усилительных) элементов в усилительных и переключательных каскадах. Реле и тиристоры имеют больший коэффициент усиления по мощности, чем транзисторы, но работают только в ключевом (переключательном) режиме.

Как работают полевые транзисторы?

Принцип действия лежит в управлении с помощью электрического поля, а оно образуется при приложении напряжения. То есть полевые транзисторы управляются напряжением. Полевой транзистор практически не потребляет тока управления, это снижает потери управления, искажения сигнала, перегрузку по току источника сигнала…

Какие транзисторы называют полевыми?

Полевые транзисторы называют также униполярными, так как в процессе протекания электрического тока участвует только один вид носителей. Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором.

Что называется пороговым напряжением в Мдп транзисторе с индуцированным каналом?

Пороговое напряжение МДП-транзистора с индуцированным каналом — это такое напряжение на затворе относительно истока, при котором в канале появляется заметный ток стока и выполняется условие начала сильной инверсии, т. е. … Контактная разность потенциалов между электродом затвора и подложкой находится из соотношения: .

Какие бывают виды транзисторов?

Основные виды современных транзисторов

  • Биполярные транзисторы; p-n-p-типа; …
  • Лавинные транзисторы;
  • Однопереходные транзисторы; с p-базой; …
  • Полевые (униполярные) транзисторы с управляющим переходом; с управляющим p-n-переходом (JFET); …
  • Полевые транзисторы c изолированным затвором (МДП-транзисторы) (MOSFET);

Как называются выводы полевого транзистора?

Независимо от разновидности полевого транзистора он имеет три вывода. Один из них называется Затвор (З). … Исток аналогичен эмиттеру у биполярных транзисторов. Третий вывод именуется Сток (С).

Как называются выводы у биполярного транзистора?

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор).

Читайте также  Триггер что?

Что такое эмиттер?

ЭМИ́ТТЕР, -а, м. Излучатель, электрод, испускающий электроны1 под воздействием внешних причин.

Какие два типа биполярных транзисторов существует?

Начнем с того, что транзисторы бывают двух типов: NPN и PNP. Эти загадочные аббревиатуры обозначают порядок наложения эдаких бутербродных слоев или — в нашем случае — pn-переходов в полупроводниковом материале, из которого и состоит транзистор.

Полевые транзисторы с управляющим p-n переходом

Автор: anclebenz от 14-11-2015 –!>

Полевые транзисторы с управляющим p-n переходом

Полевые транзисторы с управляющим p-n переходом. Режимы работы полевых транзисторов. Схемы включения полевых транзисторов. Параметры полевых транзисторов. Преимущества и недостатки полевых транзисторов. Области применения полевых транзисторов. Маркировка полевых транзисторов

Полевыми транзисторами (ПТ) называются полупроводниковые приборы, которые управляются электрическим полем, т.е. практически без затраты мощности управляющего сигнала. В англоязычной литературе эти транзисторы называют транзисторами типа FET (Field Effect Transistor).

  1. Разновидности полевых транзисторов

Различают шесть различных типов полевых транзисторов. Их условные обозначения в электрических схемах представлены на рис. 1.

Рис. 1. Разновидности полевых транзисторов

Управляющим электродом полевого транзистора является затвор З. Он позволяет управлять величиной сопротивления между стоком С и истоком И (область полупроводника между С и И называют каналом). Управляющим напряжением является напряжение UЗИ. Большинство ПТ являются симметричными, т.е. их свойства почти не изменяются, если их электроды С и И поменять местами. В транзисторах с управляющим переходом затвор отделен от канала СИ p-n переходом. При правильной полярности напряжения UЗИ p-n переход запирается, и изолирует затвор от канала; при противоположной полярности он открывается. Для полевых транзисторов с управляющим переходом такой режим является запрещенным.

У ПТ с изолированным затвором, или МОП транзисторов (МОП – металл-оксид-полупроводник) затвор отделен от канала СИ тонким слоем диэлектрика. При таком исполнении транзистора ток через затвор не будет протекать при любой полярности напряжения на затворе. Входные сопротивления полевых транзисторов с управляющим переходом составляют от 1010 до 1013 Ом, а для МОП транзисторов – от 1013 до 1015 Ом. В МОП транзисторах присутствует четвертый вывод от так называемой подложки. Этот электрод, как и затвор, может выполнять управляющие функции, но он отделен от канала только p-n переходом. Управляющие свойства подложки обычно не используются, а ее вывод соединяют с выводом истока.

  1. Режимы работы полевых транзисторов

Аналогично делению биполярных транзисторов на p-n-p и n-p-n-транзисторы, полевые транзисторы делятся на p-канальные и n-канальные. У n-канальных полевых транзисторов ток канала становится тем меньше, чем меньше потенциал затвора. У p-канальных полевых транзисторов наблюдается обратное явление.

Типовые передаточные характеристики полевых транзисторов приведены на рис. 2. Пользуясь этими характеристиками, можно установить полярность управляющего напряжения, направление тока в канале и диапазон управляющего напряжения.

Рассмотрим некоторые особенности этих характеристик. Все характеристики полевых транзисторов с каналом n-типа расположены в верхней половине графика и, следовательно, имеют положительный ток, что соответствует положительному напряжению на стоке. Наоборот, все характеристики приборов с каналом p-типа расположены в нижней половине графика и, следовательно, имеют отрицательное значение тока и отрицательное напряжение на стоке. Характеристики полевых транзисторов с управляющим переходом при нулевом напряжении на затворе имеют максимальное значение тока, которое называется IС НАЧ. При увеличении запирающего напряжения ток стока уменьшается и при напряжении отсечки UОТС становится близким к нулю.

Рис. 2. Типовые передаточные характеристики полевых транзисторов

Характеристики МОП транзисторов с индуцированным каналом при нулевом напряжении на затворе имеют нулевой ток. Появление тока стока в таких транзисторах происходит при напряжении на затворе больше порогового значения UПОР. Увеличение напряжения на затворе приводит к увеличению тока стока.

Характеристики МОП транзистора со встроенным каналом при нулевом напряжении на затворе имеют начальное значение тока IС НАЧ. Такие транзисторы могут работать как в режиме обогащения, так и режиме обеднения. При увеличении напряжения на затворе канал обогащается и ток стока растет, а при уменьшении напряжения на затворе канал обедняется и ток стока снижается.

Карта входных и выходных напряжений при заземленном истоке приведена на рис. 3.

Рис. 3. Карта входных и выходных полярностей транзисторов

Различные транзисторы, включая биполярные, нарисованы в квадрантах, характеризующих их входное и выходное напряжение в активной области при заземленном истоке (или эмиттере).

При заземленном истоке полевого транзистора включается (переходит в проводящее состояние) путем смещения напряжения затвора в сторону напряжения питания стока. Например, для n-канального полевых транзисторов с управляющим p-n переходом используется положительное напряжение питания стока, как и для всех n-канальных приборов. Таким образом, этот полевой транзистор включается положительным смещением затвора.

На рис. 4 приведены выходные вольт-амперные характеристики полевых транзисторов с управляющим переходом с каналом n-типа. Характеристики других типов транзисторов имеют аналогичный вид, но отличаются напряжением на затворе и полярностью приложенных напряжений. На этих вольт-амперных характеристиках можно выделить две области: линейную и насыщения.

 Рис. 4. Выходные характеристики полевых транзисторов с управляющим переходом и каналом n-типа

В линейной области вольт-амперные характеристики вплоть до точки перегиба представляют собой прямые линии, наклон которых зависит от напряжения на затворе. В области насыщения вольт-амперные характеристики идут практически горизонтально, что позволяет говорить о независимости тока стока от напряжения на стоке. Особенности этих характеристик обусловливают применение полевых транзисторов. В линейной области полевые транзисторы используют как сопротивление, управляемое напряжением на затворе, а в области насыщения – как усилительный элемент.

  1. Схемы включения полевых транзисторов

Включение полевых транзисторов с управляющим p-n переходом и каналом n типа в схемы усилительных каскадов с общим истоком и общим стоком показано на рис. 5, а, б.

Рис. 5. Включение полевых транзисторов в схемы: а) с общим истоком, б) с общим стоком

Постоянное напряжение Е1 обеспечивает получение определенного значения тока стока IС=E/(rСИ+RН) в зависимости от сопротивления канала rСИ. При подаче входного усиливаемого напряжения UВХ потенциал затвора меняется, а соответственно меняются и токи стока и истока, а также падение напряжения на резисторе RН. Приращение падения напряжения на резисторе RН при большом его значении гораздо больше приращений входного напряжения. За счет этого осуществляется усиление сигнала. При изменении типа проводимости канала меняются только полярности приложенных напряжений и направления токов.

  1. Параметры полевых транзисторов

Основными параметрами полевых транзисторов, являются:

  • крутизна характеристики S=?IС/?UЗИ при UСИ=const, S=0,1…500мА/В;
  • внутреннее дифференциальное сопротивление RИС ДИФ (внутреннее сопротивление) RИС ДИФ = ?UСИ/IС при UЗИ=const, RИС ДИФ =10 … 50 кОм;
  • начальный ток стока IС НАЧ – ток стока при нулевом напряжении UЗИ; у полевых транзисторов с p-n переходом IС НАЧ =0,2÷600мА, МОП со встроенным каналом IС НАЧ = 0,1…100мА, МОП с индуцированным каналом IС НАЧ =0,01 ÷ 0,5мкА;
  • напряжение отсечки UЗИ ОТС = 0,2 ÷ 10В;
  • сопротивление сток – исток в открытом состоянии RСИ ОТК=2 … 300 Ом;
  • максимальная частота усиления fмакс – частота, на которой коэффициент усиления по мощности равен единице (fмакс – десятки ÷ сотни МГц).
  1. Преимущества и недостатки полевых транзисторов

Основными преимуществами полевых транзисторов с управляющим переходом перед биполярными транзисторами являются высокое входное сопротивление, малые шумы (обусловлены тем, что носители заряда не пересекают p-n переходов, как в биполярных транзисторах, а двигаются вдоль них), простота изготовления, малое значение остаточного напряжения между истоком и стоком открытого транзистора. Так как в полевом транзисторе ток через канал вызван перемещением основных носителей, концентрация которых определяется преимущественно количеством примеси и поэтому мало зависит от температуры, то полевые транзисторы более температуростабильны. Полевые транзисторы обладают более высокой стойкостью к ионизирующим излучениям.

При изготовлении интегральных схем и микропроцессоров часто на одном чипе изготавливаются и используются полевые транзисторы как с p-, так и с n-каналами. В этом случае транзисторы и схемы называются комплементарными, дополняющими друг друга. Такая технология получила широчайшее распространение при изготовлении микросхем с высокой степенью интеграции.

Мощность сигнала, необходимая для управления полевым транзистором во много раз меньше, чем мощность для управления биполярным транзистором. По этой причине полевые транзисторы широко используются при изготовлении интегральных схем и микропроцессоров. Такие схемы с полевыми транзисторами имеют малую потребляемую мощность, в их состав можно включать увеличенное число транзисторов.

Появление мощных полевых транзисторов (30 А и более) позволяет заменить биполярные транзисторы во многих применениях, зачастую получая более простые схемы с улучшенными параметрами.

Недостаток многих полевых транзисторов – невысокая крутизна переходной характеристики, а, следовательно, и малый коэффициент усиления схем на полевых транзисторах. Кроме этого, по быстродействию и, соответственно, по частотным свойствам полевые транзисторы, как правило, не имеют преимуществ перед биполярными транзисторами.

  1. Области применения полевых транзисторов

Схемы с высоким входным сопротивлением (слаботочные). Сюда относятся буферные или обычные усилители для тех применений, где ток базы или конечное полное входное сопротивление биполярных транзисторов ограничивает их характеристики. Можно построить такие схемы на отдельно взятых полевых транзисторах, однако сегодняшняя практика отдает предпочтение использованию интегральных схем, построенных на полевых транзисторах. В некоторых из них полевые транзисторы используются только в качестве высокоомного входного каскада, а вся другая схема построена на биполярных транзисторах, в других вся схема построена на полевых транзисторах.

Аналоговые ключи. МОП-транзисторы являются отличными аналоговыми ключами, управляемыми напряжением. По своим качествам такие ключи гораздо лучше ключей на биполярных транзисторах.

Цифровые микросхемы. МОП-транзисторы доминируют при построении микропроцессоров, схем памяти и большинства высококачественных цифровых логических схем. Микромощные логические схемы изготавливаются исключительно на МОП-транзисторах.

Мощные переключатели. Мощные МОП-транзисторы часто бывают предпочтительнее биполярных транзисторов для переключения нагрузок, в первую очередь из-за того, что в полевых транзисторах практически отсутствует входной ток и мощность управляющих сигналов чрезвычайно мала. Отличные результаты дает использование мощных ключей, построенных на комбинации биполярных и полевых транзисторов.

Переменные резисторы и источники тока. В линейной области стоковых характеристик полевые транзисторы ведут себя подобно резисторам, управляемым напряжением, в области насыщения они являются управляемыми напряжением источниками тока.

  1. Маркировка полевых транзисторов

Рассмотрим способы маркировки полевых транзисторов на примере транзистора КП 312А:

  • первая буква «К» – обозначение материала (К – кремний, А – арсенид галлия GaAs).
  • вторая буква «П» – указывает, что транзистор полевой.
  • первая цифра «3» – указывает на допустимую рассеиваемую мощность и максимальную частоту.
  • вторая и третья цифры «12» – номер разработки.
  • последняя буква «А» – параметр.

Также КП 312А маркируется двумя желтыми точками.

Вернуться 31058

Категория: Электротехника, основы электроники

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

image
Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.

image
Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.

image
Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q», после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

  • полевые;
  • биполярные;
  • комбинированные.

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.

image
Рис. 5. Полевые транзисторы
image
Рис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • биполярные транзисторы с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Если, например, кремний легировать фосфором (донор), то получим полупроводник с избытком электронов (структура n-Si). При добавлении бора (акцептор) легированный кремний станет полупроводником с дырочной проводимостью (p-Si), то есть в его структуре будут преобладать положительно заряженные ионы.

Односторонняя проводимость.

Проведём мысленный эксперимент: соединим два разнотипных полупроводника с источником питания и подведём ток к нашей конструкции. Произойдёт нечто неожиданное. Если соединить отрицательный провод с кристаллом n-типа, то цепь замкнётся. Однако, когда мы поменяем полярность, то электричества в цепи не будет. Почему так происходит?

В результате соединения кристаллов с разными типами проводимости, между ними образуется область с p-n переходом. Часть электронов (носителей зарядов) из кристалла n-типа перетечёт в кристалл с дырочной проводимостью и рекомбинирует дырки в зоне контакта.

В результате возникают некомпенсированные заряды: в области n-типа – из отрицательных ионов, а в области p-типа из положительных. Разница потенциалов достигает величины от 0,3 до 0,6 В.

Связь между напряжением и концентрацией примесей можно выразить формулой:

φ= V* ln (Nn Np)/n2i, где

VT величина термодинамического напряжения, Nn и Np концентрация соответственно электронов и дырок, а ni обозначает собственную концентрацию.

При подсоединении плюса к p-проводнику, а минуса к полупроводнику n-типа, электрические заряды преодолеют барьер, так как их движение будет направлено против электрического поля внутри p-n перехода. В данном случае переход открыт. Но если полюса поменять местами, то переход будет закрыт. Отсюда вывод: p-n переход образует одностороннюю проводимость. Это свойство используется в конструкции диодов.

От диода к транзистору.

Усложним эксперимент. Добавим ещё одну прослойку между двумя полупроводниками с одноименными структурами. Например, между кремниевыми пластинами  p-типа вставим прослойку проводимости (n-Si). Не трудно догадаться, что произойдёт в зонах соприкосновения. По аналогии с вышеописанным процессом образуются области с p-n переходами, которые заблокируют движение электрических зарядов между эмиттером и коллектором, причём независимо от полярности тока.

Самое интересное произойдёт тогда, когда мы приложим незначительное напряжение к прослойке (базе). В нашем случае, подадим ток с отрицательным знаком. Как и в случае с диодом, образуется цепь эмиттер-база, по которой потечёт ток. Одновременно прослойка начнёт насыщаться дырками, что приведёт к дырочной проводимости между эмиттером и коллектором.

Посмотрите на рисунок 7. На нём видно, что положительные ионы заполнили всё пространство нашей условной конструкции и теперь ничто не мешает проводимости тока. Мы получили наглядную модель биполярного транзистора структуры p-n-p.

image
Рис. 7. Принцип работы триода

При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается.

Устройство может работать и в усилительном режиме.

Ток коллектора связан прямой пропорциональностью с током базы: Iк = ß*IБ, где ß коэффициент усиления по току, IБ ток базы.

Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Этот принцип используют для усиления сигналов.

Подавая на базу слабые импульсы, на выходе мы получаем такую же частоту усиления, но со значительно большей амплитудой (задаётся величиной напряжения, приложенного к цепочке коллектор эмиттер).

Аналогичным образом работают npn транзисторы. Меняется только полярность напряжений. Устройства со структурой n-p-n обладают прямой проводимостью. Обратную проводимость имеют транзисторы p-n-p типа.

Остаётся добавить, что полупроводниковый кристалл подобным образом реагирует на ультрафиолетовый спектр света. Включая и отключая поток фотонов, или регулируя его интенсивность, можно управлять работой триода или менять сопротивление полупроводникового резистора.

Схемы включения биполярного транзистора

Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором (Рис. 8).

image
Рис. 8. Схемы подключения биполярных транзисторов

Для усилителей с общей базой характерно:

  • низкое входное сопротивление, которое не превышает 100 Ом;
  • хорошие температурные свойства и частотные показатели триода;
  • высокое допустимое напряжение;
  • требуется два разных источника для питания.

Схемы с общим эмиттером обладают:

  • высокими коэффициентами усиления по току и напряжению;
  • низкие показатели усиления по мощности;
  • инверсией выходного напряжения относительно входного.

При таком подключении достаточно одного источника питания.

Схема подключения по принципу «общий коллектор» обеспечивает:

  • большое входное и незначительное выходное сопротивление;
  • низкий коэффициент напряжения по усилению (< 1).

Как работает полевой транзистор? Пояснение для чайников

Строение полевого транзистора отличается от биполярного тем, что ток в нём не пересекает зоны p-n перехода. Заряды движутся по регулируемому участку, называемому затвором. Пропускная способность затвора регулируется напряжением.

Пространство p-n зоны уменьшается или увеличивается под действием электрического поля (см. Рис. 9). Соответственно меняется количество свободных носителей зарядов – от полного разрушения до предельного насыщения. В результате такого воздействия на затвор, регулируется ток на электродах стока (контактах, выводящих обработанный ток). Входящий ток поступает через контакты истока.

image
Рисунок 9. Полевой транзистор с p-n переходом

По аналогичному принципу работают полевые триоды со встроенным и индуцированным каналом. Их схемы вы видели на рисунке 5.

Схемы включения полевого транзистора

На практике применяют схемы подключений по аналогии с биполярным триодом:

  • с общим истоком – выдаёт большое усиление тока и мощности;
  • схемы с общим затвором обеспечивающие низкое входное сопротивление, и незначительное усиление (имеет ограниченное применение);
  • с общим стоком, работающие так же, как и схемы с общим эмиттером.

На рисунке 10 показаны различные схемы включения.

image
Рис. 10. Изображение схем подключения полевых триодов

Практически каждая схема способна работать при очень низких входных напряжениях.

Видео, поясняющие принцип работы транзистора простым языком

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий