Фоторезисторы, фотодиоды и фототранзисторы и как их применять

Датчики освещенности (освещения), построенные на базе фоторезисторов, довольно часто используются в реальных ардуино проектах. Они относительно просты, не дороги, их легко найти и купить в любом интернет-магазине. Фоторезистор ардуино позволяет контролировать уровень освещенности и реагировать на его изменение. В этой статье мы рассмотрим, что такое фоторезистор, как работает датчик освещенности на его основе, как правильно подключить датчик в платам Arduino.

Фоторезистор ардуино и датчик освещенности

Фоторезистор, как следует из названия, имеет прямое отношение к резисторам, которые часто встречаются практически в любых электронных схемах. Основной характеристикой обычного резистора является величина его сопротивления. От него зависят напряжение и ток, с помощью резистора мы выставляем нужные режимы работы других компонентов. Как правило, значение сопротивления у резистора в одних и тех же условиях эксплуатации практически не меняется.

В отличие от обычного резистора, фоторезистор может менять свое сопротивление в зависимости от уровня окружающего освещения. Это означает, что в электронной схеме будут постоянно меняться параметры, в первую очередь нас интересует напряжение, падающее на фоторезисторе. Фиксируя эти изменения напряжения на аналоговых пинах ардуино, мы можем менять логику работы схемы, создавая тем самым адаптирующиеся под вешние условия устройства.

Фоторезисторы достаточно активно применяются в самых разнообразных системах. Самый распространенный вариант применения — фонари уличного освещения. Если на город опускается ночь или стало пасмурно, то  огни включаются автоматически. Можно сделать из фоторезистора экономную лампочку для дома, включающуюся не по расписанию, а в зависимости от освещения. На базе датчика освещенности можно сделать даже охранную систему, которая будет срабатывать сразу после того, как закрытый шкаф или сейф открыли и осветили. Как всегда, сфера применения любых датчиков ардуино ограничена лишь нашей фантазией.

Какие фоторезисторы можно купить в интернет-магазинах

Самый популярный и доступный вариант датчика на рынке – это модели массового выпуска китайских компаний, клоны изделий производителя VT. Там не всегда можно разораться, кто и что именно производит тот или иной поставщик, но для начала работы с фоторезисторами вполне подойдет самый простой вариант.

Начинающему ардуинщику можно посоветовать купить готовый фотомодуль, который выглядит вот так:

На этом модуле уже есть все необходимые элементы для простого подключения фоторезистора к плате ардуино. В некоторых модулях реализована схема с компаратором и доступен цифровой выход и подстроечный резистор для управления.

Российскому радиолюбителю можно посоветовать обратить на российский датчик ФР. Встречающиеся в продаже ФР1-3, ФР1-4 и т.п. — выпускались ещё в союзовские времена. Но, несмотря на это, ФР1-3 – более точная деталь. Из этого следует и разница в цене За ФР просят не более 400 рублей. ФР1-3 будет стоить больше тысячи рублей за штуку.

Маркировка фоторезистора

Современная маркировка моделей, выпускаемых в России, довольно простая. Первые две буквы — ФотоРезистор, цифры после чёрточки обозначают номер разработки. ФР -765 — фоторезистор, разработка 765. Обычно маркируется прямо на корпусе детали

У датчика VT в схеме маркировке указаны диапазон сопротивлений. Например:

  • VT83N1 — 12-100кОм (12K – освещенный, 100K – в темноте)
  • VT93N2 — 48-500кОм (48K – освещенный, 100K – в темноте).

Иногда для уточнения информации о моделях продавец предоставляет специальный документ от производителя. Кроме параметров работы там же указывается точность детали. У всех моделей диапазон чувствительности расположен в видимой части спектра. Собирая датчик света нужно понимать, что точность срабатывания — понятие условное. Даже у моделей одного производителя, одной партии, одной закупки отличаться она может на 50% и более.

На заводе детали настраиваются на длину волны от красного до зелёного света. Большинство при этом «видит» и инфракрасное излучение. Особо точные детали могут улавливать даже ультрафиолет.

Достоинства и недостатки датчика

Основным недостатком фоторезисторов является чувствительность к спектру. В зависимости от типа падающего света сопротивление может меняется на несколько порядков. К минусам также относится низкая скорость реакции на изменение освещённости. Если свет мигает — датчик не успевает отреагировать. Если же частота изменения довольно велика — резистор вообще перестанет «видеть», что освещённость меняется.

К плюсам можно отнести простоту и доступность. Прямое изменение сопротивления в зависимости от попадающего на неё света позволяет упростить электрическую схему подключения. Сам фоторезистор очень дешев, входит в состав многочисленных наборов и конструкторов ардуино, поэтому доступен практически любому начинающему ардуинщику.

Подключение фоторезистора к ардуино

В проектах arduino фоторезистор используется как датчик освещения. Получая от него информацию, плата может включать или выключать реле, запускать двигатели, отсылать сообщения. Естественно, при этом мы должны правильно подключить датчик.

Схема подключения датчика освещенности к ардуино довольна проста. Если мы используем фоторезистор, то в схеме подключения датчик реализован как делитель напряжения. Одно плечо меняется от уровня освещённости, второе –  подаёт напряжение на аналоговый вход. В микросхеме контроллера это напряжение преобразуется в цифровые данные через АЦП. Т.к. сопротивление датчика при попадании на него света уменьшается, то и значение падающего на нем напряжения будет уменьшаться.

В зависимости от того, в каком плече делителя мы поставили фоторезистор, на аналоговый вход будет подаваться или повышенное или уменьшенное напряжение. В том случае, если одна нога фоторезистора подключена к земле, то максимальное значение напряжения будет соответствовать темноте (сопротивление фоторезистора максимальное, почти все напряжение падает на нем), а минимальное – хорошему освещению (сопротивление близко к нулю, напряжение минимальное). Если мы подключим плечо фоторезистора к питанию, то поведение будет противоположным.

Сам монтаж платы не должен вызывать трудностей. Так как фоторезистор не имеет полярности, подключить можно любой стороной, к плате его можно припаять, подсоединить проводами с помощью монтажной платы или использовать обычные клипсы (крокодилы) для соединения. Источником питания в схеме является сам ардуино. Фоторезистор подсоединяется одной ногой к земле, другая подключается к АЦП платы (в нашем примере – АО). К этой же ноге подключаем резистор 10 кОм. Естественно, подключать фоторезистор можно не только на аналоговый пин A0, но и на любой другой.

Несколько слов относительно дополнительного резистора на 10 К. У него в нашей схеме две функции: ограничивать ток в цепи и формировать нужное напряжение в схеме с делителем. Ограничение тока нужно в ситуации, когда полностью освещенный фоторезистор резко уменьшает свое сопротивление. А формирование напряжения – для предсказуемых значений на аналоговом порту. На самом деле для нормальной работы с нашими фоторезисторами хватит и сопротивления 1К.

Меняя значение резистора мы можем “сдвигать” уровень чувствительности в “темную” и “светлую” сторону.  Так, 10 К даст быстрое переключение наступления света. В случае 1К датчик света будет более точно определять высокий уровень освещенности.

Если вы используете готовый модуль датчика света, то подключение будет еще более простым. Соединяем выход модуля VCC с разъемом 5В на плате, GND – c землей. Оставшиеся выводы соединяем с разъемами ардуино.

Если на плате представлен цифровой выход, то отправляем его на цифровые пины. Если аналоговый – то на аналоговые. В первом случае мы получим сигнал срабатывания – превышения уровня освещенности (порог срабатывания может быть настроен с помощью резистора подстройки). С аналоговых же пинов мы сможем получать величину напряжения, пропорциональную реальному уровню освещенности.

Пример скетча датчика освещенности на фоторезисторе

Мы подключили схему с фоторезистором к ардуино, убедились, что все сделали правильно. Теперь осталось запрограммировать контроллер.

Написать скетч для датчика освещенности довольно просто. Нам нужно только снять текущее значение напряжения с того аналогового пина, к которому подключен датчик. Делается это с помощью известной нам всем функции analogRead(). Затем мы можем выполнять какие-то действия, в зависимости от уровня освещенности.

Давайте напишем скетч для датчика освещенности, включающего или выключающего светодиод, подключенный по следующей схеме.

Алгоритм работы таков:

  • Определяем уровень сигнала с аналогового пина.
  • Сравниваем уровень с пороговым значением. Максимально значение будет соответствовать темноте, минимальное – максимальной освещенности. Пороговое значение выберем равное 300.
  • Если уровень меньше порогового – темно, нужно включать светодиод.
  • Иначе – выключаем светодиод.
  #define PIN_LED 13  #define PIN_PHOTO_SENSOR A0    void setup() {    Serial.begin(9600);    pinMode(PIN_LED, OUTPUT);  }    void loop() {    int val = analogRead(PIN_PHOTO_SENSOR);    Serial.println(val);    if (val < 300) {      digitalWrite(PIN_LED, LOW);    } else {      digitalWrite(PIN_LED, HIGH);    }  }  

Прикрывая фоторезистор (руками или светонепроницаемым предметом), можем наблюдать включение и выключение светодиода. Изменяя в коде пороговый параметр, можем заставлять включать/выключать лампочку при разном уровне освещения.

При монтаже постарайтесь расположить фоторезистор и светодиод максимально далеко друг от друга, чтобы на датчик освещенности попадало меньше света от яркого светодиода.

Датчик освещенности и плавное изменение яркости подсветки

Можно модифицировать проект так, чтобы в зависимости от уровня освещенности менялась яркость светодиода. В алгоритм мы добавим следующие изменения:

  • Яркость лампочки будем менять через ШИМ, посылая с помощью analogWrite() на пин со светодиодом значения от 0 до 255.
  • Для преобразования цифрового значения уровня освещения от датчика освещенности (от 0 до 1023) в диапазон ШИМ яркости светодиода (от 0 до 255) будем использовать функцию map().

Пример скетча:

  #define PIN_LED 10  #define PIN_PHOTO_SENSOR A0    void setup() {    Serial.begin(9600);    pinMode(PIN_LED, OUTPUT);  }    void loop() {    int val = analogRead(PIN_PHOTO_SENSOR);    Serial.println(val);      int ledPower = map(val, 0, 1023, 0, 255); // Преобразуем полученное значение в уровень PWM-сигнала. Чем меньше значение освещенности, тем меньше мощности мы должны подавать на светодиод через ШИМ.      analogWrite(PIN_LED, ledPower); // Меняем яркость    }  

В случае другого способа подключения, при котором сигнал с аналогового порта пропорционален степени освещенности, надо будет дополнительно «обратить» значение, вычитая его из максимального:

    int val = 1023 – analogRead(PIN_PHOTO_RESISTOR);    

Схема датчика освещения на фоторезисторе и реле

Примеры скетча для работы с реле приведены в статье, посвященной программированию реле в ардуино. В данном случае, нам не нужно делать сложных телодвижений: после определения «темноты» мы просто включаем реле, подавай на его пин соответствующее значение.

  #define PIN_RELAY 10  #define PIN_PHOTO_SENSOR A0    void setup() {    pinMode(PIN_RELAY, OUTPUT);    digitalWrite(PIN_RELAY, HIGH);  }    void loop() {    int val = analogRead(PIN_PHOTO_SENSOR);    if (val < 300) {      // Светло, выключаем реле      digitalWrite(PIN_RELAY, HIGH);    } else {      // Темновато, включаем лампочку      digitalWrite(PIN_RELAY,  LOW);    }  }  

Заключение

Проекты с применением датчика освещенности на базе фоторезистора достаточно просты и эффектны. Вы можете реализовать множество интересных проектов, при этом стоимость оборудования будет не высока. Подключение фоторезистора осуществляется по схеме делителя напряжения с дополнительным сопротивлением. Датчик подключается к аналоговому порту для измерения различных значений уровня освещенности или к цифровому, если нам важен лишь факт наступления темноты. В скетче мы просто считываем данные с аналогового (или цифрового) порта и принимаем решение, как реагировать на изменения. Будем надеяться, что теперь в ваших проектах появятся и такие вот простейшие «глаза».

Датчики бывают совершенно разными. Они отличаются по принципу действию, логике своей работы и физическим явлениям и величинам на которые они способны реагировать. Датчики света используются не только в аппаратуре автоматического управления освещением, они используются в огромном количестве устройств, начиная от блоков питания, заканчивая сигнализациями и охранными системами.

image

Основные виды фотоэлектронных приборов. Общие сведения

Фотоприёмник в общем смысле – это электронный прибор, который реагирует на изменение светового потока падающего на его чувствительную часть. Они могут отличаться, как по своей структуре, так и принципу работы. Давайте их рассмотрим.

Фоторезисторы – изменяют сопротивление при освещении

Фоторезистор – фотоприбор изменяющий проводимость (сопротивление) в зависимости от количества света падающего на его поверхность. Чем интенсивнее освещенность чувствительной области, тем меньше сопротивления. Вот его схематическое изображение.

image

Состоит он из двух металлических электродов, между которыми присутствует полупроводниковый материал. Когда световой поток попадает на полупроводник, в нём высвобождаются носители заряда, это способствует прохождению тока между металлическими электродами.

Энергия светового потока тратится на преодоление электронами запрещенной зоны и их переходу в зону проводимости. В качестве полупроводника у фоторезисторов используют материалы типа: Сульфид Кадмия, Сульфид Свинца, Селенит Кадмия и другие. От типа этого материала зависит спектральная характеристика фоторезистора

Интересно:

Спектральная характеристика содержит информацию о том, к каким длинам волн (цвету) светового потока наиболее чувствителен фоторезистор. Для некоторых экземпляров приходится тщательно подбирать излучатель света соответствующей длины волны, для достижения наибольшей чувствительности и эффективности работы.

Фоторезистор не предназначен для точного измерения освещенности, а, скорее, для определения наличия света, по его показаниям можно определить светлее или темнее стала окружающая среда. Вольт-амперная характеристика фоторезистора выглядит следующим образом.

На ней изображена зависимость тока от напряжения при различных величинах светового потока: Ф – темнота, а Ф3 – это яркий свет. Она линейна. Еще одна важная характеристика – это чувствительность, она измеряется в мА(мкА)/(Лм*В). Что отражает, сколько тока протекает через резистор, при определенном световом потоке и приложенном напряжении.

Темновое сопротивление – это активное сопротивление при полном отсутствии освещения, обозначается Rт, а характеристика Rт/Rсв – это кратность изменения сопротивления от состояния фоторезистора в полном отсутствии освещения к максимально освещенному состоянию и минимально возможному сопротивлению соответственно.

У фоторезисторов есть существенный недостаток – его граничная частота. Это величина описывает максимальную частоту синусоидального сигнала, которым вы моделируете световой поток, при которой чувствительность снижается на 1.41 раз. В справочниках это отражается либо значением частоты, либо через постоянную времени. Она отражает быстродействие приборов, которое обычно занимает десятки микросекунд – 10^(-5) с. Это не позволяет использовать его там, где нужно высокое быстродействие.

Фотодиод – преобразует свет в электрический заряд

Фотодиод – элемент, который преобразует свет, попадающий на чувствительную зону, в электрический заряд. Это происходит потому что при облучении в p-n переходе протекают различные процессы связанные с движением носителей заряда.

Если на фоторезисторе изменялась проводимость из-за движения носителей заряда в полупроводнике, то здесь происходит образование заряда на границе p-n перехода. Он может работать в режиме фотопреобразователя и фотогенератора.

По структуре он такой же, как и обычный диод, но на его корпусе есть окно для прохождения света. Внешне они бывают в различных исполнениях.

Фотодиоды с черным корпусом воспринимают только ИК-излучение. Черное покрытие – это что-то похожее на тонировку. Фильтрует ИК-спектр, чтобы исключить возможность срабатывания на излучения других спектров.

У фотодиодов, как и у фоторезисторов есть граничная частота, только здесь она на порядки больше и достигает 10 МГц, что позволяет обеспечить неплохое быстродействие. P-i-N фотодиоды обладают большим быстродействием – 100МГц-1ГГц, как и диоды на основании барьера Шоттки. Лавинные диоды имеют граничную частоту в порядка 1-10 ГГц.

В режиме фотопреобразователя такой диод работает как ключ управляемый светом, для этого его подключают в цепь в прямом смещении. То есть, катодом к точке с более положительным потенциалом (к плюсу), а анодом к более отрицательному (к минусу).

Когда диод не освещается светом – в цепи протекает только обратный темновой ток Iобрт (единицы и десятки мкА), а когда диод освещен к нему добавляется фототок, который зависит только от степени освещенности (десятки мА). Чем больше света – тем больше ток.

Фототок Iф равен:

Iф=Sинт*Ф,

где Sинт – интегральная чувствительность, Ф – световой поток.

Типовая схема включения фотодиода в режиме фотопреобразователя. Обратите внимание на то, как он подключен – в обратном направлении по отношению к источнику питания.

Другой режим – генератор. При попадании света на фотодиод на его выводах образуется напряжение, при этом токи короткого замыкания в таком режиме равняются десятки ампер. Это напоминает работу элементов солнечной батареи, но имеют малую мощность.

Фототранзисторы – открываются от количества падающего света

Фототранзистор – это по своей сути биполярный транзистор у которого вместо вывода базы есть в корпусе окошко для попадания туда света. Принцип работы и причины этого эффекта аналогичны с предыдущими приборами. Биполярные транзисторы управляются количеством тока протекающего через базу, а фототранзисторы по аналогии управляются количеством света.

Иногда на УГО еще дополнительно изображается вывод базы. Вообще напряжения на фототранзистор подают также как и на обычный, а второй вариант включения – с плавающей базой, когда базовый вывод остаётся незадействованным.

В схему включают фототранзисторы подобным образом.

Или меняют местами транзистор и резистор, смотря, что конкретно вам нужно. При отсутствии света через транзистор протекает темновой ток, который образуется из тока базы, который вы можете задать сами.

Задав необходимый ток базы, вы можете выставить чувствительность фототранзистора подбором его базового резистора. Таким образом, можно улавливать даже самый тусклый свет.

В советское время радиолюбители делали фототранзисторы своими руками – делали окошко для света, спилив обычному транзистору часть корпуса. Для этого отлично подходят транзисторы типа МП14-МП42.

Из вольтамперной характеристики видна зависимость фототока от освещения, при этом он практически не зависит от напряжения коллектор-эмиттер.

Кроме биполярных фототранзисторов существуют и полевые. Биполярные работают на частотах 10-100 кГц, то полевые более чувствительны. Их чувствительность достигает нескольких Ампер на Люмен, и более «быстрые» – до 100 мГц. У полевых транзисторов есть интересная особенность, при максимальных значениях светового потока напряжение на затворе почти не влияет на ток стока.

Области применения фотоэлектронных приборов

В первую очередь следует рассмотреть более привычные варианты их применения, например автоматическое включение света.

Схема, изображенная выше – это простейший прибор для включения и выключения нагрузки при определенной освещенности. Фотодиод ФД320 При попадании на него света открывается и на R1 падает определенное напряжение, когда его величина достаточна для открытия транзистора VT1 – он открывается, и открывает еще один транзистор – VT2. Эти два транзистора – это двухкаскадный усилитель тока, необходим для запитки катушки реле K1.

Диод VD2 – нужен для гашения ЭДС-самоиндукции, которое образуется при переключениях катушки. На подводящий контакт реле, верхний по схеме, подключается один из проводов от нагрузки (для переменного тока – фаза или ноль).

У нас есть нормально замкнутый и разомкнутый контакты, они нужны либо для выбора включаемой цепи, либо для выбора включить или отключить нагрузку от сети при достижении необходимой освещенности. Потенциометр R1 нужен для подстройки прибора для срабатывания при нужном количестве света. Чем больше сопротивление – тем меньше света нужно для включения схемы.

Вариации этой схемы используют в большинстве подобных приборов, при необходимости добавляя определенный набор функций.

Кроме включения нагрузки по освещенности подобные фотоприемники используются в различных системах контроля, например на турникетах метро часто используют фоторезисторы для определения несанкционированного (зайцем) пересечения турникета.

В типографии при обрыве полосы бумаги свет попадает на фотоприемник и тем самым даёт сигнал оператору об этом. Излучатель стоит по одну сторону от бумаги, а фотоприемник с обратной стороны. Когда бумага рвётся, свет от излучателя достигает фотоприемника.

В некоторых видах сигнализации используются в качестве датчиков входа в помещение излучатель и фотоприемник, при этом, чтобы излучение не были видны используют ИК-приборы.

Касаемо ИК-спектра, нельзя упомянуть о приемнике телевизора, на который поступают сигналы от ИК-светодиода в пульте дистанционного управления, когда вы переключаете каналы. Специальным образом кодируется информация и телевизор понимает, что вам нужно.

Информация таким образом ранее передавалась через ИК-порты мобильных телефонов. Скорость передачи ограничена, как последовательным способом передачи, так и принципом работы самого прибора.

В компьютерных мышках также используется технология связанная с фотоэлектронными приборами.

Применение для передачи сигналов в электронных схемах

Оптоэлектронные приборы – это приборы которые объединяют в одном корпусе излучатель и фотоприемник, типа описанных выше. Они нужны для связи двух контуров электрической цепи.

Это нужно для гальванической развязки, быстрой передачи сигнала, а также для соединения цепей постоянного и переменного тока, как в случае управления симистором в цепи 220 В 5 В сигналом с микроконтроллера.

Они имеют условно-графическое обозначение, которое содержит информацию о типе используемых внутри оптопары элементов.

Рассмотрим пару примеров использования таких приборов.

Управление симистором с помощью микроконтроллера

Если вы проектируете тиристорный или симисторный преобразователь вы столкнетесь с проблемой. Во-первых, если переход у управляющего вывода пробьет – на пин микроконтроллера попадет высокий потенциал и последний выйдет из строя. Для этого разработаны специальные драйверы, с элементом, который называется оптосимистор, например MOC3041.

Обратная связь с помощью оптопары

В импульсных стабилизированных блоках питания необходима обратная связь. Если исключить гальваническую развязку в этой цепи, тогда в случае выхода из строя каких-то компонентов в цепи ОС, на выходной цепи возникнет высокий потенциал и подключенная аппаратура выйдет из строя, я не говорю о том, что и вас может ударить током.

В конкретном примере вы видите реализацию такой ОС из выходной цепи в обмотку обратной связи (управляющую) транзистора с помощью оптопары с порядковым обозначением U1.

Выводы

Фото- и оптоэлектроника это очень важные разделы в электроники, которые значительно улучшили качество аппаратуры, её стоимость и надёжность. С помощью оптопары можно исключить использование развязывающего трансформатора в таких цепях, что уменьшает массогабаритные показатели. Кроме того некоторые устройства просто невозможно реализовать без таких элементов.

Ранее ЕлектроВести писали о фотодатчиках и их применении. 

По материалам electrik.info. 

Назначение подобных устройств состоит в трансформации освещения в электросигнал. Принцип, по которому работают фоторезисторы заключается в переработке сигнала цифровой или аналоговой логической схемой. Об особенностях подобного процесса под влиянием света рассказывается в нашей статье.

Характеристики фоторезистора

При выборе устройства необходимо учитывать следующие характеристики:

  • темновое сопротивление любой модели фоторезистора в условиях полной темноты, когда световой поток отсутствует;
  • свойство элемента реагировать на изменения параметров потока света – интегральная фоточувствительность. А/лм – единица измерения, а аббревиатура обозначения выглядит так – S=lф/Ф, при этом ф означает здесь световой, а lф – фотопоток.

Разница в параметрах рабочего тока при разных режимах освещения будет тем показателем, который получается из-за имеющегося в подобном случае явления фотопроводимости. Свои показатели имеет каждая модель по величине темнового сопротивления.

Для данных устройств характерна некоторая инерционность, выражающаяся в небольшой задержке при изменении сопротивления после полученного облучения. Часто такое свойство именуют граничной частотой. Она представляет собой одно из свойств сигнала синусоидального типа, через который модулируется на элемент поток света. Данный процесс протекает с понижением чувствительности до уровня, равного корню из 2 – 1,41.

В диапазоне десятков микросекунд расположены показатели быстродействия компонентов. Из этого следует вывод о нецелесообразности установки фоторезисторов в схемах, где необходима быстрая реакция.

Работа фоторезистора

Примем за основу утверждение, что речь идет о полупроводниковом приборе с зависящим от степени освещения его поверхности сопротивлением. Встречаются самые разные варианты конструкции. Для эксплуатации в специфических условиях в основном берутся модели с металлическим корпусом и, расположенным в нем для проникновения света, окошком. Графическое изображение такого варианта исполнения приводится на рисунке ниже.

Важно обратить внимание на то, что фоторезистивным эффектом называют процесс трансформации сопротивления под влиянием светового потока.

Главный принцип работы фоторезистора это резкое увеличение его проводимости синхронно с падением сопротивления на участке между парой проводящих электродов. В условиях темноты сопротивляемость полупроводника выражается большими числами и может достигать Мом показателей.

Выбор материалов изготовления довольно обширен, от этого зависит номинальная характеристика спектральности прибора. Чтобы не усложнять понимание сложными терминами, можно обозначить такое свойство, как корректное изменение сопротивления в соответствующем диапазоне длин волн при меняющемся освещении. Следовательно, принимать во внимание рабочий спектр фоторезистора необходимо при выборе устройства.

Примером может быть ситуация с подходящими спектральными параметрами при подборе полупроводников под элементы с УФ-чувствительностью. С характеристиками разных материалов можно ознакомиться на следующем рисунке.

Часто приходится отвечать на вопрос, как работает фоторезистор с учетом направления протекания тока. Здесь важно понять, что подобный прибор любой конструкции не имеет полярности, говоря по-другому отсутствует p-n переход. Нет никакой разницы в имеющемся на конкретный момент направлении.

Проверка прибора выполняется в режиме показаний сопротивления обычным мультиметром. При этом тестируются элемент в затемненном и освещенном состоянии.

Специальный график понадобится для анализа примерной зависимости освещения от уровня освещенности.

Ф3 – показатель тока при самом ярком свете, а Ф будет таким же параметром в темноте.

Еще один рисунок показывает, как при изменении светового потока трансформируется ток постоянного напряжения.

И, наконец, третий график демонстрирует взаимосвязь сопротивления и освещенности.

Любопытно наглядно познакомится с популярными моделями времен выпуска в СССР.

Более новые образцы визуально смотрятся несколько по-другому.

Маркировка для обозначения параметров таких элементов делается в буквенном виде.

Применение фоторезисторов

Наиболее распространенные примеры использования фоторезисторов можно рассмотреть после того, как мы детально разобрались в их особенностях и принципе работы. Даже при довольно жестких границах быстродействия вариантом, где данные приборы остаются очень востребованными, можно назвать довольно много:

  • для автоматического режима включения осветительных устройств с наступлением темного времени суток оптимальным выбором будут сумеречные реле. Наличие специального реле электромеханического варианта конструкции и оригинальных деталей отличает самый простой образец данного прибора на нижнем изображении. Минусом можно назвать потенциальные проблемы с возможностью неприятной вибрации при крайних показателях напряжения. Здесь не исключается при минимальной смене освещенности самопроизвольное отключение и включение;
  • детектирование светового потока небольшой интенсивности достигается при помощи датчиков освещенности. Популярная модификация – конструкция на основе ARDUINO UNO;
  • повышенная чувствительность к УФ-излучению присуща схемам сигнализации. При возникновении препятствия между излучателем и принимающим элементом срабатывает исполнительный механизм;
  • в промышленности широко применяются датчики наличия иных параметров.

Теперь можно говорить о подробном знакомстве с особенностями конструкции, рабочими характеристиками и областью использования фоторезисторов.

Наглядное изложение материалов статьи на видео.

Работа фотоэлектронных приборов основана на явлениях, вызываемых действием лучистой энергии. По характеру действия светового потока на фотоэлектронный прибор различают приборы с фотоэффектом: внутренним — на основе полупроводников, в которых под действием фотонов происходит генерация носителей зарядов – электронов проводимости и «дырок»; внешним, у которых под действием светового потока возникает фотоэлектронная эмиссия. К фотоэлектронным приборам с внутренним фотоэффектом относятся фоторезисторы, фотогальванические элементы, фотодиоды, фототранзисторы и фототиристоры. К фотоэлектронным приборам с внешним фотоэффектом относятся электровакуумные и газонаполненные фотоэлементы и фотоэлектронные умножители. Что такое фоторезисторы? Фоторезисторы обладают свойством изменять свою электропроводность под действием светового потока. Материалом для фоторезисторов служат селен, сернистый свинец, сернистый кадмий, сернистый висмут и другие полупроводники. Для изготовления фоторезистора на изоляционную пластину методом напыления наносят слой полупроводника, на который, в свою очередь, наносят слой металла (платины, золота) в виде двух гребенок. Непосредственный контакт между гребенками отсутствует, в результате между зубцами гребенок оказывается слой светочувствительного полупроводника. При освещении слоя полупроводника увеличивается число электронов, переходящих в зону проводимости, увеличивается электропроводность, вследствие чего изменяется сопротивление между напыленными участками металла. Вольт-амперные характеристики фоторезисторов линейные. На рис. 1 показаны устройство фоторезистора (вид а), схема его включения (вид б) и вольт-амперная характеристика (вид в). В условном обозначении фоторезисторов имеются буквы русского алфавита — ФС.imageРис.1. ФоторезисторЧто такое фотодиоды? Фотодиоды — полупроводниковые приборы, в основу действия которых положено свойство электронно-дырочного перехода изменять обратное сопротивление под действием светового потока. На рис. 2 показаны устройство (вид а) и схема включения (вид б) фотодиода. Когда фотодиод не освещен, в цепи резистора R проходит обратный ток очень небольшой величины.imageРис.2. ФотодиодПри освещении фотодиода увеличивается число «дырок» в области полупроводника с электронной проводимостью. При включении напряжения эти «дырки» проходят через электронно-дырочный переход, вызывая увеличение тока в цепи нагрузки. Фотодиоды могут работать в двух режимах: режим А характеризуется отсутствием внешнего источника напряжения, фотодиод работает как вентильный фотоэлемент; режим В характеризуется работой фотодиода с внешним источником напряжения и называется фотодиодным. При освещении фотодиода его ток возрастает за счет фототока приблизительно пропорционально освещенности. В условном обозначении фотодиодов имеются буквы русского алфавита — ФД. Что такое фототранзисторы? Фототранзисторы представляют собой полупроводниковые приборы с двумя р – n – переходами. Облучению подвергается область базы. Под действием света в базовой области образуются свободные носители зарядов —электроны и «дырки». «Дырки», направляясь к коллекторному переходу, проходят в область коллектора и вызывают увеличение обратного тока Ir. Если напряжение между базой и эмиттером неизменно, то работа фототранзистора аналогична работе фотодиода. Такой фототранзистор не имеет вывода базы, но имеет повышенную чувствительность по сравнению с фотодиодом. Вывод базы в фототранзисторах используют для создания смещения, необходимого для получения линейной характеристики при измерении малых световых сигналов. В условном обозначении фототранзисторов имеются буквы русского алфавита — ФТ. Фотодиоды и фототранзисторы используют в качестве чувствительных элементов в системах телеконтроля, автоматических устройств, в аппаратуре считывания числового материала, фототелеграфии и т. д. Основной их недостаток — зависимость параметров от температуры. Вентильные фотоэлементы Вентильные фотоэлементы представляют собой полупроводниковые устройства, в которых световая энергия непосредственно преобразуется в электрическую. Они не требуют посторонних источников тока, так как сами являются ими. Вентильный фотоэлемент состоит из металлической пластины, служащей одним электродом, со слоем полупроводника, поверх которого нанесен второй полупрозрачный электрод, чаще всего выполненный напылением слоя золота в вакууме. Запирающий слой образуется на границе полупроводникового слоя и полупрозрачного электрода. В качестве полупроводникового материала применяют сернистые и селенистые соединения. Световая энергия, проникающая через полупрозрачный слой металла на электронно-дырочный переход, ионизирует атомы кристаллического полупроводника, создавая при этом новые пары носителей заряда— электроны и «дырки». Это приводит к образованию избытка «дырок» в слое р и избытка электронов в слое n. Разность потенциалов между слоями р и n вызывает ток, величина которого пропорциональна освещенности фотоэлемента. Вентильные фотоэлементы применяют для изготовления солнечных батарей, непосредственно преобразующих солнечную энергию в электрическую. На судах вентильные фотоэлементы применяют в качестве датчиков в аппаратуре фотоэлектронной автоматики, в фотоэлектрических и релейных схемах. Фотоэлементы с внешним фотоэффектом на судах не применяют.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий